人教版九年级数学上册第二十四章圆章节练习练习题(含答案解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级数学上册 第24章 圆 人教版九年级数学上册 人教版九年级数学上册第二十四章圆 人教版九年级数学上册 第24章 人教版九年级数学上册 第 24 章 人教版数学九年级 第 24 章
- 资源描述:
-
1、人教版九年级数学上册第二十四章圆章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系xOy中,已知点A(4,3),以原点O为圆心,5为半径作O,则()A点A在O上B点A在O内C点A在O
2、外D点A与O的位置关系无法确定2、如图,在四边形ABCD中,则AB()A4B5CD3、如图,AC是O的直径,弦AB/CD,若BAC=32,则AOD等于()A64B48C32D764、如图,点在上,则()ABCD5、已知:如图,PA,PB分别与O相切于A,B点,C为O上一点,ACB65,则APB等于()A65B50C45D406、如图,点O是ABC的内心,若A70,则BOC的度数是()A120B125C130D1357、如图,AB是半圆的直径,点D是弧AC的中点,ABC50,则BCD()A105B110C115D1208、如图,是的直径,点C为圆上一点,的平分线交于点D,则的直径为()ABC1D
3、29、如图,AB是O的直径,C,D是O上位于AB异侧的两点下列四个角中,一定与ACD互余的角是()AADCBABDCBACDBAD10、如图,一个油桶靠在直立的墙边,量得并且则这个油桶的底面半径是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在O中,是O的直径,点是点关于的对称点,是上的一动点,下列结论:;的最小值是10上述结论中正确的个数是_2、如图,已知是的直径,且,弦,点是弧上的点,连接、,若,则的长为_3、如图,四边形ABCD内接于O,A=125,则C的度数为_4、如图,正五边形ABCDE和正三角形AMN都是O的内接多边形,则BOM_.5、已
4、知:如图,半圆O的直径AB12cm,点C,D是这个半圆的三等分点,则弦AC,AD和CD围成的图形(图中阴影部分)的面积S是 _.三、解答题(5小题,每小题10分,共计50分)1、如图,O的半径弦AB于点C,连结AO并延长交O于点E,连结EC已知,(1)求O半径的长;(2)求EC的长2、如图,已知四边形 ABCD 内接于O,且已知ADC=120;请仅用无刻度直尺作出一个30的圆周角要求:(1)保留作图痕迹,写出作法,写明答案;(2)证明你的作法的正确性3、如图,分别切、于点、切于点,交于点与不重合)(1)用直尺和圆规作出;(保留作图痕迹,不写作法)(2)若半径为1,求的长4、已知P为O上一点,过
5、点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合),连接AP、BP,若APQ=BPQ(1)如图1,当APQ=45,AP=1,BP=2时,求O的半径。(2)如图2,连接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,设NOP=,OPN=,若AB平行于ON,探究与的数量关系。5、如图,是的高,为的中点试说明点在以点为圆心的同一个圆上-参考答案-一、单选题1、A【解析】【分析】先求出点A到圆心O的距离,再根据点与圆的位置依据判断可得【详解】解:点A(4,3)到圆心O的距离,OAr5,点A在O上,故选:A【考点】本题考查了对点与圆的位置关系的判断关键
6、要记住若半径为,点到圆心的距离为,则有:当时,点在圆外;当时,点在圆上,当时,点在圆内,也考查了勾股定理的应用2、D【解析】【分析】延长AD,BC交于点E,则E=30,先在RtCDE中,求得CE的长,然后在RtABE中,根据E的正切函数求得AB的长【详解】如图,延长AD,BC交于点E,则E=30,在RtCDE中,CE=2CD=6(30锐角所对直角边等于斜边的一半),BE=BC+CE=8,在RtABE中,AB=BEtanE=8=.故选D.【考点】本题考查了解直角三角形,特殊角的三角函数值,解此题的关键在于构造一个直角三角形,然后利用锐角三角函数进行解答.3、A【解析】【分析】由AB/CD,BAC
7、32,根据平行线的性质,即可求得ACD的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得AOD的度数【详解】解:弦AB/CD,BAC=32,ACDBAD32, AOD=2ACD23264.故选:A【考点】此题考查了圆周角定理与平行线的性质解题的关键是注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半4、D【解析】【分析】先证明再利用等弧的性质及圆周角定理可得答案【详解】解: 点在上, 故选:【考点】本题考查的两条弧,两个圆心角,两条弦之间的关系,圆周角定理,等弧的概念与性质,掌握同弧或等弧的概念与性质是解题的关键5、B【解析】【分析
8、】连接OA,OB根据圆周角定理和四边形内角和定理求解即可【详解】连接OA,OB,PA、PB切O于点A、B,PAOPBO90,由圆周角定理知,AOB2ACB130,APB360PAOPBOAOB360909013050故选:B【考点】本题考查了切线的性质、圆周角定理、以及四边形的内角和为360度6、B【解析】【分析】利用内心的性质得OBCABC,OCBACB,再根据三角形内角和计算出OBC+OCB55,然后再利用三角形内角和计算BOC的度数【详解】解:O是ABC的内心,OB平分ABC,OC平分ACB,OBCABC,OCBACB,OBC+OCB(ABC+ACB)(180A)(18070)55,BO
9、C180(OBC+OCB)18055125故选:B【考点】此题主要考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角7、C【解析】【分析】连接AC,然后根据圆内接四边形的性质,可以得到ADC的度数,再根据点D是弧AC的中点,可以得到DCA的度数,直径所对的圆周角是90,从而可以求得BCD的度数【详解】解:连接AC,ABC50,四边形ABCD是圆内接四边形,ADC130,点D是弧AC的中点,CDAC,DCADAC25,AB是直径,BCA90,BCDBCA+DCA115,故选:C【考点】本题考查圆周角定理、圆心角、弧、弦的关系,解答本题的关键是
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
放射科主治医师-6.pdf
