人教版九年级数学上册第二十四章圆重点解析试题(含答案解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 上册 第二 十四 重点 解析 试题 答案
- 资源描述:
-
1、人教版九年级数学上册第二十四章圆重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是一圆锥的侧面展开图,其弧长为,则该圆锥的全面积为 A60B85C95D1692、如图,点A,B,C,D,E是O
2、上5个点,若ABAO2,将弧CD沿弦CD翻折,使其恰好经过点O,此时,图中阴影部分恰好形成一个“钻戒型”的轴对称图形,则“钻戒型”(阴影部分)的面积为()AB43C44D3、如图,AB为的直径,C,D为上的两点,若,则的度数为()ABCD4、已知扇形的圆心角为,半径为,则弧长为()ABCD5、如图,公园内有一个半径为18米的圆形草坪,从地走到地有观赏路(劣弧)和便民路(线段).已知、是圆上的点,为圆心,小强从走到,走便民路比走观赏路少走()米.ABCD6、如图,矩形中,分别是,边上的动点,以为直径的与交于点,则的最大值为()A48B45C42D407、如图所示,矩形纸片中,把它分割成正方形纸片
3、和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则圆锥的表面积为()ABCD8、如图,AB是O的直径,BC与O相切于点B,AC交O于点D,若ACB=50,则BOD等于()A40B50C60D809、 “圆材埋壁”是我国古代著名数学著作九章算术中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:如图所示,CD为O的直径,弦ABCD,垂足为E,CE为1寸,AB为10寸,求直径CD的长依题意,CD长为()A寸B13寸C25寸D26寸10、在平面直角坐标系xOy中,已知点A(4,3),以原点O为圆心,5为半径作O,则
4、()A点A在O上B点A在O内C点A在O外D点A与O的位置关系无法确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线yx+6与x轴、y轴分别交于A、B两点,点P是以C(1,0)为圆心,1为半径的圆上一点,连接PA,PB,则PAB面积的最大值为_2、如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是_cm(计算结果保留)3、如图,在中,半径,是半径上一点,且,是上的两个动点,是的中点,则的长的最大值等于_4、如图,正五边形ABCDE内接于O,点F在上,则CFD_度5、用反证法证明:“如果两条直线都
5、和第三条直线平行,那么这两条直线也互相平行”.第一步应假设:_三、解答题(5小题,每小题10分,共计50分)1、已知:如图,、是的切线,切点分别是、,为上一点,过点作的切线,交、于、点,已知,求的周长2、如图,O的半径弦AB于点C,连结AO并延长交O于点E,连结EC已知,(1)求O半径的长;(2)求EC的长3、用反证法证明:一条线段只有一个中点4、在中,已知O经过点C,且与相切于点D(1)在图中作出O;(要求:尺规作图,不写作法,保留作图痕迹)(2)若点D是边上的动点,设O与边、分别相交于点E、F,求的最小值5、如图,在RtABC中,ACB90,BAC的平分线交BC于点O,OC1,以点O为圆心
6、OC为半径作半圆(1)求证:AB为O的切线;(2)如果tanCAO,求cosB的值-参考答案-一、单选题1、B【解析】【分析】设圆锥的底面圆的半径为r,扇形的半径为R,先根据弧长公式得到=10,解得R=12,再利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2r=10,解得r=5,然后计算底面积与侧面积的和【详解】设圆锥的底面圆的半径为r,扇形的半径为R,根据题意得=10,解得R=12,2r=10,解得r=5,所以该圆锥的全面积=52+1012=85故选B【考点】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长2、A
7、【解析】【分析】连接CD、OE,根据题意证明四边形OCED是菱形,然后分别求出扇形OCD和菱形OCED以及AOB的面积,最后利用割补法求解即可【详解】解:连接CD、OE,由题意可知OCODCEED,弧弧,S扇形ECDS扇形OCD,四边形OCED是菱形,OE垂直平分CD,由圆周角定理可知CODCED120,CD222,ABOAOB2,AOB是等边三角形,SAOB22,S阴影2S扇形OCD2S菱形OCED+SAOB2(22)+2(2)+3,故选:A【考点】此题考查了菱形的性质和判定,等边三角形的性质,圆周角定理,求解圆中阴影面面积等知识,解题的关键是根据题意做出辅助线,利用割补法求解3、B【解析】
8、【分析】连接AD,如图,根据圆周角定理得到,然后利用互余计算出,从而得到的度数【详解】解:连接AD,如图,AB为的直径,故选B【考点】本题主要考查了同弦所对的圆周角相等,直径所对的圆周角是直角,解题的关键在于能够熟练掌握相关知识进行求解.4、D【解析】【分析】根据扇形的弧长公式计算即可【详解】扇形的圆心角为 30 ,半径为 2cm ,弧长cm故答案为:D【考点】本题主要考查扇形的弧长,熟记扇形的弧长公式是解题的关键5、D【解析】【分析】作OCAB于C,如图,根据垂径定理得到AC=BC,再利用等腰三角形的性质和三角形内角和计算出A,从而得到OC和AC,可得AB,然后利用弧长公式计算出的长,最后求
9、它们的差即可【详解】解:作OCAB于C,如图,则AC=BC,OA=OB,A=B=(180-AOB)=30,在RtAOC中,OC=OA=9,AC=,AB=2AC=,又=,走便民路比走观赏路少走米,故选D【考点】本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题6、A【解析】【分析】过A点作AHBD于H,连接OM,如图,先利用勾股定理计算出BD=75,则利用面积法可计算出AH=36,再证明点O在AH上时,OH最短,此时HM有最大值,最大值为24,然后根据垂径定理可判断MN的最大值【详解】解:过A点作AHBD于H,连接OM,如图,在RtABD中,BD=,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
【执业药师考试】执业药师(综合知识与技能)中药学历年真题试卷汇编14.pdf
