人教版九年级数学下28.2 解直角三角形及其应用(含解析)-教师用卷.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版九年级数学下28.2 解直角三角形及其应用含解析-教师用卷 人教版 九年级 数学 28.2 直角三角形 及其 应用 解析 教师
- 资源描述:
-
1、28.2 解直角三角形及其应用一、选择题1. 在RtABC中,C=90,sinA=35,BC=6,则AB=()A. 4B. 6C. 8D. 10【答案】D【解析】解:在RtABC中,C=90,sinA=BCAB=35,BC=6,AB=BCsinA=635=10,故选:D2. 如图,长4m的楼梯AB的倾斜角ABD为60,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角ACD为45,则调整后的楼梯AC的长为()A. 23mB. 26mC. (232)mD. (262)m【答案】B【解析】解:在RtABD中,sinABD=ADAB,AD=4sin60=23(m),在RtACD中,sinACD=A
2、DAC,AC=23sin45=26(m)故选B3. 小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB的位置,测得PBC=(BC为水平线),测角仪BD的高度为1米,则旗杆PA的高度为()A. 11sinB. 11+sinC. 11cosD. 11+cos【答案】A【解析】解:设PA=PB=PB=x, 在RTPCB中,x1x=sin,x1=xsin,(1sin)x=1,x=11sin故选:A4. 如图,在直角BAD中,延长斜边BD到点C,使DC=12BD,连接AC,若tanB=53,则tanCAD的值()A. 33B. 35C. 13D.
3、15【答案】D【解析】解:如图,延长AD,过点C作CEAD,垂足为E,tanB=53,即ADAB=53,设AD=5x,则AB=3x,CDE=BDA,CED=BAD,CDEBDA,CEAB=DEAD=CDBD=12,CE=32x,DE=52x,AE=152x,tanCAD=ECAE=15故选D5. 一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A. (4+4sin)米2B. 4cos米2C. (4+4tan)米2D. (4+4tan)米2【答案】D【解析】解:在RtABC中,BC=ACtan
4、=4tan(米),AC+BC=4+4tan(米),地毯的面积至少需要1(4+4tan)=4+4tan(米2);故选:D6. 如图,点E是矩形ABCD的边AD的中点,且BEAC于点F,则下列结论中错误的是()A. AF=12CFB. DCF=DFCC. 图中与AEF相似的三角形共有4个D. tanCAD=22【答案】C【解析】解:A、AD/BC,AEFCBF,AEBC=AFFC,AE=12AD=12BC,AFFC=12,故A正确,不符合题意;B、过D作DM/BE交AC于N,DE/BM,BE/DM,四边形BMDE是平行四边形,BM=DE=12BC,BM=CM,CN=NF,BEAC于点F,DM/BE
5、,DNCF,DF=DC,DCF=DFC,故B正确,不符合题意;C、图中与AEF相似的三角形有ACD,BAF,CBF,CAB,ABE共有5个,故C错误D、设AD=a,AB=b由BAEADC,有ba=a2btanCAD=CDAD=ba=22,故D正确,不符合题意故选C7. 如图,AB是O的直径,且经过弦CD的中点H,已知cosCDB=45,BD=5,则OH的长度为()A. 23B. 56C. 1D. 76【答案】D【解析】解:连接OD,如图所示: AB是O的直径,且经过弦CD的中点H,ABCD,OHD=BHD=90,cosCDB=DHBD=45,BD=5,DH=4,BH=BD2DH2=3,设OH=
6、x,则OD=OB=x+3,在RtODH中,由勾股定理得:x2+42=(x+3)2,解得:x=76,OH=76;故选:D8. 如图,在四边形ABCD中,E、F分别是AB、AD中点,若EF=2,BC=5,CD=3,则tanC等于()A. 43B. 34C. 35D. 45【答案】A【解析】解:连接BD,E、F分别是AB、AD中点,BD=2EF=4,BD2+CD2=25,BC2=25,BD2+CD2=BC2,BDC=90,tanC=BDCD=43,故选:A9. 如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:AQDP;OA2=
7、OEOP;SAOD=S四边形OECF;当BP=1时,tanOAE=1316,其中正确结论的个数是()A. 1B. 2C. 3D. 4【答案】C【解析】解:四边形ABCD是正方形,AD=BC,DAB=ABC=90,BP=CQ,AP=BQ,在DAP与ABQ中,AD=ABDAP=ABQAP=BQ,DAPABQ,P=Q,Q+QAB=90,P+QAB=90,AOP=90,AQDP;故正确;DOA=AOP=90,ADO+P=ADO+DAO=90,DAO=P,DAOAPO,AOOD=OPOA,AO2=ODOP,AEAB,AEAD,ODOE,OA2OEOP;故错误;在CQF与BPE中FCQ=EBPQ=PCQ=
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
