分享
分享赚钱 收藏 举报 版权申诉 / 24

类型人教版八年级数学上册第十三章轴对称同步训练试卷(附答案详解).docx

  • 上传人:a****
  • 文档编号:877297
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:24
  • 大小:439.84KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 八年 级数 上册 第十三 轴对称 同步 训练 试卷 答案 详解
    资源描述:

    1、人教版八年级数学上册第十三章轴对称同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,ABC90,分别以点A和点B为圆心,大于AB的长为半径作弧相交于点D和点E,直线DE交AC于

    2、点F,交AB于点G,连接BF,若BF3,AG2,则BC()A5B4C2D22、在平面直角坐标系中,点关于轴对称的点的坐标为()ABCD3、下列黑体字中,属于轴对称图形的是()A善B勤C健D朴4、如图,在中,DE是AC的垂直平分线,的周长为13cm,则的周长为()A16cmB13cmC19cmD10cm5、已知等腰三角形一腰上的高与另一腰的夹角为50,则底角的度数为()A40B70C40或140D70或206、如图所示,已知ABC(ACABBC),用尺规在线段BC上确定一点P,使得PA+PCBC,则符合要求的作图痕迹是()ABCD7、如图,若是等边三角形,是的平分线,延长到,使,则()A7B8C

    3、9D108、如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A2条B4条C6条D8条9、在平面直角坐标系中,若点P(a3,1)与点Q(2,b1)关于x轴对称,则ab的值是()A1B2C3D410、等腰三角形两边长为3,6,则第三边的长是()A3B6CD3或6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知:如图,中,分别是和的平分线,过O点的直线分别交、于点D、E,且若,则的周长为_2、如图,在中,D、E是内两点AD平分,若,则_cm3、如图,点D是的平分线OC上一点,过点D作交射线OA于点E,则线段DE与OE的数量关系为:DE_OE(

    4、填“”或“”或“”)4、在ABC中,A+BC,且AB=2BC,B=_5、如图,在中,以为边,作,满足,为上一点,连接,连接下列结论中正确的是_(填序号);若,则;三、解答题(5小题,每小题10分,共计50分)1、如图,点P是AOB外的一点,点Q与P关于OA对称,点R与P关于OB对称,直线QR分别交OA、OB于点M、N,若PMPN4,MN5(1)求线段QM、QN的长;(2)求线段QR的长2、如图,在平面直角坐标系中,A(2,4),B(3,1),C(1,2)(1)在图中作出ABC关于y轴的对称图形ABC;(2)写出点A、B、C的坐标;(3)连接OB、OB,请直接回答:OAB的面积是多少?OBC与O

    5、BC这两个图形是否成轴对称3、如图,已知ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若ABC=50,求BOC的度数4、在三角形纸片ABC中,点E在AC上,将三角形纸片ABC按图中方式折叠,使点A的对应点落在AB的延长线上,折痕为ED,交BC于点F(1)求的度数;(2)求BF的长度5、在边长为1个单位长度的小正方形网格中,建立平面直角坐标系,已知点O为坐标原点,点C的坐标为(3,1)(1)写出点A和点B的坐标,并在图中画出与ABC关于x轴对称的图形;(2)写出点B1的坐标,连接CB1,则线段CB1的长为 (直接写出得数)-参考答案-一、单选题1、C【解

    6、析】【分析】利用线段垂直平分线的性质得到,再证明,利用勾股定理即可解决问题【详解】解:由作图方法得垂直平分,故选:【考点】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)方法是解题关键,同时还考查了线段垂直平分线的性质2、D【解析】【分析】利用关于x轴对称的点坐标特征:横坐标不变,纵坐标互为相反数解答即可【详解】点关于轴对称的点的坐标为(3,-2),故选:D【考点】本题主要考查了关于坐标轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解答的关键3、A【解析】【分析】轴对称图形

    7、:把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,根据轴对称图形的定义可得答案.【详解】解:由轴对称图形的定义可得:善是轴对称图形,勤,健,朴三个字都不是轴对称图形,故符合题意,不符合题意,故选:【考点】本题考查的是轴对称图形的含义,轴对称图形的识别,掌握定义,确定对称轴是解题的关键.4、C【解析】【分析】根据线段垂直平分线性质得出,求出AC和的长,即可求出答案【详解】解:DE是AC的垂直平分线,的周长为13cm,的周长为,故选:C【考点】考查垂直平分线的性质,三角形周长问题,解题的关键是掌握垂直平分线的性质5、D【解析】【分析】分两种情况讨论:若A90;若A90

    8、;先求出顶角BAC,即可求出底角的度数【详解】解:分两种情况讨论:若A90,如图1所示:BDAC,A+ABD90,ABD50,A905040,ABAC,ABCC(18040)70;若A90,如图2所示:同可得:DAB905040,BAC18040140,ABAC,ABCC(180140)20;综上所述:等腰三角形底角的度数为70或20,故选:D【考点】本题考查了等腰三角形的性质以及余角和邻补角的定义;注意分类讨论方法的运用,避免漏解6、C【解析】【分析】根据线段垂直平分线的性质可得,作AB的垂直平分线,交BC于点P,则PB+PC=BC,进而可以判断【详解】解:作AB垂直平分线交BC于点P,连接

    9、PA,则PA=PB,所以PA+PC=PB+PC=BC所以符合要求的作图痕迹是C故选:C【考点】本题考查了作图-复杂作图,解决本题的关键是掌握线段垂直平分线的性质7、C【解析】【分析】根据等边三角形三线合一得到BD垂直平分CA,所以CD=,另有 ,从而求出BE的长度【详解】解:由于ABC是等边三角形,则其三边相等,BD也是AC的垂直平分线,即AB=BC=CA=6,AD=DC=3,已知CE=CD,则CE=3而BE=BC+CE,因此BE=6+3=9故答案选C【考点】本题考查了等边三角形性质,看到等边三角形应想到三条边相等,三线合一8、B【解析】【分析】根据轴对称的性质即可画出对称轴进而可得此图形的对

    10、称轴的条数【详解】解:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形,所以此图形的对称轴有4条故选:B【考点】本题考查了正方形的性质、轴对称的性质、轴对称图形,解决本题的关键是掌握轴对称的性质9、C【解析】【分析】直接利用关于轴对称点的性质:横坐标不变,纵坐标互为相反数,即可得出,的值,进而得出答案【详解】解:点与点关于轴对称,则故选:C【考点】此题主要考查了关于轴对称点的性质,正确记忆关于轴对称点的符号关系是解题关键10、B【解析】【分析】题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】由等腰三角

    11、形的概念,得第三边的长可能为3或6,当第三边是3时,而3+3=6,所以应舍去;则第三边长为6故选B【考点】此题考查等腰三角形的性质和三角形的三边关系解题关键在于已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答二、填空题1、【解析】【分析】根据两直线平行,内错角相等,以及角平分线性质,可OBD,EOC为等腰三角形,由此把ADE的周长转化为AC+AB.【详解】,又是的角平分线,同理,的周长故答案为:14cm【考点】本题考查了平行线的性质和等腰三角形的判定,正确证明OBD,EOC均为等腰三角形是关键.2、10【解析】【分析】过点E作,垂足为F,延长

    12、AD到H,交BC于点H,过点D作,垂足为G,由直角三角形中所对的直角边是斜边的一半可知,然后由等腰三角形三线合一可知,然后再证明四边形DGFH是矩形,从而得到,最后根据计算即可.【详解】解;过点E作,垂足为F,延长AD到H,交BC于点H,过点D作,垂足为G,又,AD平分,且,四边形DGFH是矩形.故答案为:10.【考点】本题主要考查的是等腰三角形的性质,含直角三角形的性质以及矩形的性质和判定,根据题意构造含的直角三角形是解题的关键.3、【解析】【分析】首先由平行线的性质求得EDO=DOB,然后根据角平分线的定义求得EOD=DOB,最后根据等腰三角形的判定和性质即可判断【详解】解:EDOB,ED

    13、O=DOB,D是AOB平分线OC上一点,EOD=DOB,EOD=EDO,DE=OE,故答案为:=【考点】本题主要考查的是平行线的性质、角平分线的定义以及等角对等边,根据平行线的性质和角平分线的定义求得EOD=EDO是解题的关键4、60【解析】【分析】利用三角形内角和定理求得C=90,在RtACB中,AB=2BC推出A=30,从而得出B的度数【详解】根据三角形的内角和定理得,A+B+C=180,A+B=C,C+C=180,解得C=90,在RtACB中,AB=2BC,A=30,B=90-30=60故答案为:60【考点】本题考查了三角形内角和定理的应用,含30度角的直角三角形的性质,灵活运用含30度

    14、角的直角三角形的性质是解题的关键5、【解析】【分析】通过延长EB至E,使BE=BE,连接,构造出全等三角形,再利用全等三角形的性质依次分析,可得出正确的结论是【详解】解:如图,延长EB至E,使BE=BE,连接;ABC=90,AB垂直平分EE,AE=AE,1=2,3=5,1=,EAE=21=CAD,EAC=EAD,又AD=AC,5=4,ADE=ACB(即正确),3=4;当6=1时,4+6=3+1=90,此时,AME=180(4+6)=90,当61时,4+63+1,4+690,此时,AME90,不正确;若CDAB,则7=BAC,AD=AC,7=ADC,CAD+7+ADC=180,1+7=90,2+

    15、7=90,2+BAC=90,即EAC=90,由,EAD=CAE=90,EC=DE,AEAD(即正确),DE=EB+BE+CE=2BE+CE(即正确);故答案为:【考点】本题综合考查了线段的垂直平分线的判定与性质、全等三角形的判定与性质、等腰三角形的性质、平行线的性质等内容;要求学生能够根据已知条件通过作辅助线构造出全等三角形以及能正确运用全等三角形的性质得到角或线段之间的关系,能进行不同的边或角之间的转换,考查了学生的综合分析和数形结合的能力三、解答题1、(1)4,1;(2)5【解析】【分析】(1)利用轴对称的性质求出MQ即可解决问题;(2)利用轴对称的性质求出NR即可解决问题【详解】(1)P

    16、,Q关于OA对称,OA垂直平分线段PQ,MQMP4,MN5,QNMNMQ541(2)P,R关于OB对称,OB垂直平分线段PR,NRNP4,QRQN+NR1+45【考点】本题考查轴对称的性质,解题的关键是理解题意,熟练掌握轴对称的性质属于中考常考题型2、(1)见解析;(2)A(2,4),B(3,1),C(1,2);(3)5;是;OBC与OBC这两个图形关于y轴成轴对称【解析】【分析】(1)先确定A、B、C关于y轴的对称点A、B、C,然后再顺次连接即可;(2)直接根据图形读出A、B、C的坐标即可;(3)运用OAB所在的矩形面积减去三个三角形的面积即可;根据图形看OBC与OBC是否有对称轴即可解答【

    17、详解】解:(1)如图;ABC即为所求;(2)如图可得:A(2,4)B(3,1)C(1,2);(3)OAB的面积为:43-31-42-31=5;OBC与OBC这两个图形关于y轴成轴对称OBC与OBC这两个图形关于y轴成轴对称【考点】本题主要考查了轴对称变换和不规则三角形面积的求法,作出ABC关于y轴的对称图形ABC以及运用拼凑法求不规则三角形的面积成为解答本题的关键3、(1)证明见解析;(2)BOC=100【解析】【分析】(1)首先根据等腰三角形的性质得到ABC=ACB,然后利用高线的定义得到ECB=DBC,从而得证;(2)首先求出A的度数,进而求出BOC的度数【详解】解:(1)证明:AB=AC

    18、,ABC=ACB,BD、CE是ABC的两条高线,DBC=ECB,OB=OC;(2)ABC=50,AB=AC,A=180250=80,BOC=360-18080=100【考点】考点:等腰三角形的性质4、(1);(2)1【解析】【分析】(1)先根据折叠的性质可得,再根据邻补角的定义可得,然后根据直角三角形的性质可得,最后根据对顶角相等即可得;(2)先根据线段的和差可得,再根据等边三角形的判定与性质可得,然后根据折叠的性质可得,从而可得,最后利用直角三角形的性质即可得【详解】(1)由折叠的性质得:,点落在AB的延长线上,由对顶角相等得:;(2),在中,由(1)知,是等边三角形,由折叠的性质得:,则在中,【考点】本题考查了折叠的性质、等边三角形的判定与性质、直角三角形的性质等知识点,熟练掌握折叠的性质是解题关键5、(1)A(1,3),B(-3,2),见解析;(2)(-3,-2),【解析】【分析】(1)根据平面直角坐标系直接写出点A,点B坐标,利用关于x轴对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可得到A1B1C1;(2)写出B1的坐标,运用勾股定理可求出CB1的长【详解】解:(1)A(1,3),B(-3,2),如图所示;(2)(-3,-2),的长为故答案为:【考点】本题主要考查作图轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版八年级数学上册第十三章轴对称同步训练试卷(附答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-877297.html
    相关资源 更多
  • 八年级下册(全)-2022年中考道德与法治必备知识清单(思维导图 核心知识 考点梳理)(部编版).docx八年级下册(全)-2022年中考道德与法治必备知识清单(思维导图 核心知识 考点梳理)(部编版).docx
  • 八年级下册(人教版)物理同步练习卷:8.2 二力平衡.docx八年级下册(人教版)物理同步练习卷:8.2 二力平衡.docx
  • 八年级下册(人教版)物理单元提升卷:第八章 运动和力.docx八年级下册(人教版)物理单元提升卷:第八章 运动和力.docx
  • 八年级下册道德与法治全册知识点.docx八年级下册道德与法治全册知识点.docx
  • 八年级下册课内文言文《核舟记》对比阅读(5篇 含答案).docx八年级下册课内文言文《核舟记》对比阅读(5篇 含答案).docx
  • 八年级下册课内文言文《核舟记》对比阅读(5篇 含答案).docx八年级下册课内文言文《核舟记》对比阅读(5篇 含答案).docx
  • 八年级下册英语复习Unit15(无答案).docx八年级下册英语复习Unit15(无答案).docx
  • 八年级下册英语任务型阅读专题训练(无答案).docx八年级下册英语任务型阅读专题训练(无答案).docx
  • 八年级下册英语Unit3SectionB重要考点.docx八年级下册英语Unit3SectionB重要考点.docx
  • 八年级下册第五章测试卷(B卷).docx八年级下册第五章测试卷(B卷).docx
  • 八年级下册第五章测试卷(A卷).docx八年级下册第五章测试卷(A卷).docx
  • 八年级下册第一单元 第二节第一课时《充满活力的经济制度》课件(湘师版八年级下).docx八年级下册第一单元 第二节第一课时《充满活力的经济制度》课件(湘师版八年级下).docx
  • 八年级下册电功率课件.docx八年级下册电功率课件.docx
  • 八年级下册生物第八单元第三章章末卷.docx八年级下册生物第八单元第三章章末卷.docx
  • 八年级下册生物第八单元第一章章末卷.docx八年级下册生物第八单元第一章章末卷.docx
  • 八年级下册生物第七单元第二章2卷.docx八年级下册生物第七单元第二章2卷.docx
  • 八年级下册物理走进分子世界 (共5份打包).docx八年级下册物理走进分子世界 (共5份打包).docx
  • 八年级下册物理10.1浮力助学案(无答案).docx八年级下册物理10.1浮力助学案(无答案).docx
  • 八年级下册期末试卷不含答案.docx八年级下册期末试卷不含答案.docx
  • 八年级下册复习提纲(填空版).docx八年级下册复习提纲(填空版).docx
  • 八年级下册基础知识及热点速查宝典.docx八年级下册基础知识及热点速查宝典.docx
  • 八年级下册地理:8.2 干旱的宝地——塔里木盆地教案.docx八年级下册地理:8.2 干旱的宝地——塔里木盆地教案.docx
  • 八年级下册地理:8.2 干旱的宝地——塔里木盆地教案.docx八年级下册地理:8.2 干旱的宝地——塔里木盆地教案.docx
  • 八年级下册同步练习23.马说.docx八年级下册同步练习23.马说.docx
  • 八年级下册同步练习18.在长江源头各拉丹冬.docx八年级下册同步练习18.在长江源头各拉丹冬.docx
  • 八年级下册同步练习13.最后一次讲演.docx八年级下册同步练习13.最后一次讲演.docx
  • 八年级下册化学教案-《探究燃烧的条件》|鲁教版(五四).docx八年级下册化学教案-《探究燃烧的条件》|鲁教版(五四).docx
  • 八年级下册人教部编版课外古诗词诵读陆游《卜算子·咏梅》(共39张PPT).docx八年级下册人教部编版课外古诗词诵读陆游《卜算子·咏梅》(共39张PPT).docx
  • 八年级下册人教部编版课外古诗词诵读陆游《卜算子.docx八年级下册人教部编版课外古诗词诵读陆游《卜算子.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1