分享
分享赚钱 收藏 举报 版权申诉 / 28

类型人教版八年级数学上册第十二章全等三角形专题练习练习题(含答案解析).docx

  • 上传人:a****
  • 文档编号:877364
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:28
  • 大小:818.53KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 八年 级数 上册 第十二 全等 三角形 专题 练习 练习题 答案 解析
    资源描述:

    1、八年级数学上册第十二章全等三角形专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,ABC=90,AB=6,BC=8,点E是ABC的内心,过点E作EFAB交AC于点F,则EF的长

    2、为()ABCD2、如图,在ABC中,C90,O为ABC的三条角平分线的交点,ODBC,OEAC,OFAB,点D、E、F分别是垂足,且AB10cm,BC8cm,CA6cm,则点O到边AB的距离为()A2cmB3cmC4cmD5cm3、如图,已知,是上的两个点,若,则的长为()ABCD4、如图所示,在RtABC中,ABAC,D、E是斜边BC上的两点,且DAE45,将ADC绕点A按顺时针方向旋转90后得到AFB,连接EF,有下列结论:BEDC;BAFDAC;FAEDAE;BFDC其中正确的有()ABCD5、如图,RtACB中,ACB90,ABC的角平分线AD、BE相交于点P,过P作PFAD交BC的延

    3、长线于点F,交AC于点H,则下列结论:APB135;BFBA;PHPD;连接CP,CP平分ACB,其中正确的是()ABCD6、下列说法正确的是()近似数精确到十分位;在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点A1B2C3D47、下列语句中正确的是()A斜边和一锐角对应相等的两个直角三角形全等B有两边对应相等的两个直角三角形全等C有两个角对应相等的两个直角三角形全等D有一直角边和一锐角对应相等的两个直角三角形全等8、如图,在和中,则()A30

    4、B40C50D609、如图,在中,垂足分别为D,E,交于点H,已知,则的长是()A1BC2D10、如图,在梯形中,那么下列结论不正确的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知:如图,是上一点,平分,若,则_(用的代数式表示)2、如图,在ABC中,已知AD是ABC的角平分线,作DEAB,已知AB4,AC2,ABD的面积是2,则ADC的面积为_3、如图,是一个中心对称图形,A为对称中心,若,则_,_4、在ABC中,AB=5,BC边上的中线AD=4,则AC的长m的取值范围是_5、我们定义:一个三角形最小内角的角平分线将这个三角形分割得到的两个三角形

    5、它们的面积之比称为“最小角割比”(),那么三边长分别为7,24,25的三角形的最小角割比是_三、解答题(5小题,每小题10分,共计50分)1、在中,直线经过点C,且于D,于E,(1)当直线绕点C旋转到图1的位置时,显然有:(不必证明);(2)当直线绕点C旋转到图2的位置时,求证:;(3)当直线MN绕点C旋转到图3的位置时,试问、具有怎样的等量关系?请直接写出这个等量关系2、如图,A,B,C,D依次在同一条直线上,BF与EC相交于点M求证:3、如图,小明和小华两家位于A,B两处,隔河相望要测得两家之间的距离,小明设计如下方案:从点B出发沿河岸画一条射线BF,在BF上截取,过点D作,取点E使E,C

    6、,A在同一条直线上,则DE的长就是A,B之间的距离,说明他设计的道理4、如图,AC是BAE的平分线,点D是线段AC上的一点,CE,ABAD求证:BCDE5、已知ABC与ADE均为等腰直角三角形,且BACDAE90,点D在直线BC上(1)如图1,当点D在CB延长线上时,求证:BECD;(2)如图2,当D点不在直线BC上时, BE、CD相交于M,直接写出CME的度数;求证:MA平分CME-参考答案-一、单选题1、A【解析】【分析】延长FE交BC于点D,作EGAB、作EHAC,由EFAC可证四边形BDEG是矩形,由角平分线可得ED=EH=EG、GAE=HAE,从而知四边形BDEG是正方形,再证GAE

    7、HAE、DCEHCE得AG=AH、CD=CH,设BD=BG=x,则AG=AH=6-x、CD=CH=8-x,由AC=10可得x=2,即BD=DE=2、AG=4,再证CDFCBA,可得,据此得出EF=DF-DE=.【详解】解:如图,延长FE交BC于点D,作EGAB于点G,作EHAC于点H,EFAB、ABC=90,FDAB,EGBC,四边形BDEG是矩形,AE平分BAC、CE平分ACB,ED=EH=EG,GAE=HAE,四边形BDEG是正方形,在GAE和HAE中,GAEHAE(AAS),AG=AH,同理DCEHCE,CD=CH,设BD=BG=x,则AG=AH=6x、CD=CH=8x,AC= = =1

    8、0,6x8x=10,解得:x=2,BD=DE=BG=2,AG=4,DFAB,DCFBCA,即,解得:,则EF=DFDE=,故选A【考点】本题主要考查相似三角形的判定与性质、全等三角形的判定与性质及正方形的判定与性质,熟练掌握角平分线的性质和正方形的判定与性质、相似三角形的判定与性质是解题的关键2、A【解析】【分析】根据角平分线的性质得到OEOFOD,设OEx,然后利用三角形面积公式得到SABCSOAB+SOAC+SOCB,于是可得到关于x的方程,从而可得到OF的长度【详解】解:点O为ABC的三条角平分线的交点,OEOFOD,设OEx,SABCSOAB+SOAC+SOCB, 5x+3x+4x24

    9、,x2,点O到AB的距离等于2故选:A【考点】本题考查了角平分线的性质:角平分线上的点到这个角两边的距离相等,面积法的应用是解题的关键3、B【解析】【分析】由题意可证可得可求EF的长【详解】解:在和中,故选:B【考点】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键4、C【解析】【分析】利用旋转性质可得ABFACD,根据全等三角形的性质一一判断即可【详解】解:ADC绕A顺时针旋转90后得到AFB,ABFACD,BAFCAD,AFAD,BFCD,故正确,EAFBAF+BAECAD+BAEBACDAE904545DAE故正确无法判断BECD,故错误,故选:C【考点】本题考查了

    10、旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握基本知识,属于中考常考题型5、D【解析】【分析】根据三角形内角和定理以及角平分线定义判断;根据全等三角形的判定和性质判断;根据角平分线的判定与性质判断【详解】解:在ABC中,ACB=90,BAC+ABC=90,又AD、BE分别平分BAC、ABC,BAD+ABE=(BAC+ABC)=(180-ACB)=(180-90)=45,APB=135,故正确BPD=45,又PFAD,FPB=90+45=135,APB=FPB,又ABP=FBP,BP=BP,ABPFBP(ASA),BAP=BFP,AB=FB,PA=PF,故正确在APH和FPD中,APH=F

    11、PD=90,PAH=BAP=BFP,PA=PF,APHFPD(ASA),PH=PD,故正确连接CP,如下图所示:ABC的角平分线AD、BE相交于点P,点P到AB、AC的距离相等,点P到AB、BC的距离相等,点P到BC、AC的距离相等,点P在ACB的平分线上,CP平分ACB,故正确,综上所述,均正确,故选:D【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理掌握相关性质是解题的关键6、B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较,可判断;根据点在数轴上所对应的实数,即可判断;根据反证法的概念,可判断;根据角平分线的性质,可判断【详解】近似数精确

    12、到十位,故本小题错误;,最小的是,故本小题正确;在数轴上点所表示的数为,故本小题错误;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键7、A【解析】【分析】根据全等三角形的判定定理,用排除法以每一个选项进行分析从而确定最终答案【详解】A、正确,利用AAS来判定全等;B、不正确,两边的位置不确定,不一定全等;C、不正确,两

    13、个三角形不一定全等;D、不正确,有一直角边和一锐角对应相等不一定能推出两直角三角形全等,没有相关判定方法对应故选A【考点】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形的相关判定.8、D【解析】【分析】由题意可证,有,由三角形内角和定理得,计算求解即可【详解】解:ABC和ADC均为直角三角形在和中故选D【考点】本题考查了三角形全等,三角形的内角和定理解题的关键在于找出角度的数量关系9、A【解析】【分析】利用“八字形”图形推出EAH=ECB,根据,EH=3,求出AE=4,证明AEHCEB,得到AE=CE=4,即可求出CH【详解】解:,CEB=,AHE=CHD,EAH=ECB,EH

    14、=3,AE=4,AEH=CEB,EAH=ECB,EH=BE,AEHCEB,AE=CE=4,CH=CE-EH=4-3=1,故选A【考点】此题考查了全等三角形的判定及性质,“八字形”图形的应用,熟记全等三角形的判定定理是解题的关键10、A【解析】【分析】A、根据三角形的三边关系即可得出A不正确;B、通过等腰梯形的性质结合全等三角形的判定与性质即可得出ADB=90,从而得出B正确;C、由梯形的性质得出ABCD,结合角的计算即可得出ABC=60,即C正确;D、由平行线的性质结合等腰三角形的性质即可得出DAC=CAB,即D正确综上即可得出结论【详解】A、AD=DC,ACAD+DC=2CD,故A不正确;B

    15、、四边形ABCD是等腰梯形,ABC=BAD,在ABC和BAD中,ABCBAD(SAS),BAC=ABD,ABCD,CDB=ABD,ABC+DCB=180,DC=CB,CDB=CBD=ABD=BAC,ACB=90,CDB=CBD=ABD=30,ABC=ABD+CBD=60,B正确,C、ABCD,DCA=CAB,AD=DC,DAC=DCA=CAB,C正确D、DABCBA,ADB=BCAACBC,ADB=BCA=90,DBAD,D正确;故选:A【考点】本题考查了梯形的性质、平行线的性质、等腰三角形的性质以及全等三角形的判定与性质,解题的关键是逐项分析四个选项的正误本题属于中档题,稍显繁琐,但好在该题

    16、为选择题,只需由三角形的三边关系得出A不正确即可二、填空题1、【解析】【分析】过点D分别作DEAB,DFAC,根据角平分线的性质得到DE=DF,根据表示出DE的长度,进而得到DF的长度,然后即可求出的值【详解】如图,过点D分别作DEAB,DFAC,平分,DE=DF,故答案为:【考点】此题考查了角平分线的性质定理,三角形面积的表示方法,解题的关键是根据题意正确作出辅助线2、1【解析】【分析】先根据三角形面积公式计算出DE=1,再根据角平分线的性质得到点D到AB和AC的距离相等,然后利用三角形的面积公式计算ADC的面积【详解】DEAB,SABD=DEAB=2,DE=1,AD是ABC的角平分线,点D

    17、到AB和AC的距离相等,点D到AC的距离为1,SADC=21=1故答案为:1【考点】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等,属于基础题,熟练掌握角平分线的性质是解题的关键3、 30 2【解析】【分析】根据中心对称图形的性质,得到,再由全等三角形的性质解题即可【详解】解:A为对称中心,绕点A旋转能与重合,【考点】本题考查中心对称图形的性质、全等三角形的性质等知识,是基础考点,掌握相关知识是解题关键4、3m13【解析】【分析】延长AD至E,使DE=AD=4,连接CE,利用SAS证明ABDECD,可得CE=AB,再根据三角形的三边的关系即可解决问题【详解】解:如图,延长AD至

    18、E,使DE=AD=4,连接CE,AD是BC边上的中线,BD=CD,在ADB和CDE中,ABDECD(SAS),CE=AB,在ACE中,AE-CEACAE+CE,CE=AB=5,AE=8,8-5AC8+5,3AC13,3m13故答案为:3m13【考点】此题考查了全等三角形的性质与判定,三角形的三边的关系,解题的关键是利用已知条件构造全等三角形,然后利用三角形的三边的关系解决问题5、【解析】【分析】根据题意作出图形,然后根据角平分线的性质得到,再根据三角形的面积和最小角割比的定义计算即可【详解】解:如图示,则,根据题意,作的角平分线交于点,过点,作交于点,过点,作交于点,则,则()故答案是:【考点

    19、】本题考查了三角形角平分线的性质和三角形的面积计算,熟悉相关性质是解题的关键三、解答题1、(1)见解析;(2)见解析;(3)DE=BE-AD【解析】【分析】(1)由于ABC中,ACB=90,AC=BC,直线MN经过点C,且ADMN于D,BEMN于E,由此即可证明ADCCEB,然后利用全等三角形的性质即可解决问题;(2)由于ABC中,ACB=90,AC=BC,直线MN经过点C,且ADMN于D,BEMN于E,由此仍然可以证明ADCCEB,然后利用全等三角形的性质也可以解决问题;(3)当直线MN绕点C旋转到图(3)的位置时,仍然ADCCEB,然后利用全等三角形的性质可以得到DE=BE-AD【详解】解

    20、:(1)ABC中,ACB=90,ACD+BCE=90,又直线MN经过点C,且ADMN于D,BEMN于E,ADC=CEB=90ACD+DAC=90,BCE=DAC,在ADC和CEB中,ADCCEB(AAS),CD=BE,CE=AD,DE=CD+CE=AD+BE;(2)ABC中,ACB=90,直线MN经过点C,且ADMN于D,BEMN于E,ADC=CEB=90,ACD+BCE=BCE+CBE=90,而AC=BC,ADCCEB,CD=BE,CE=AD,DE=CE-CD=AD-BE;(3)如图3,ABC中,ACB=90,直线MN经过点C,且ADMN于D,BEMN于E,ADC=CEB=90,ACD+BC

    21、E=BCE+CBE=90,ACD=CBE,AC=BC,ADCCEB,CD=BE,CE=AD,DE=CD-CE=BE-AD;DE、AD、BE之间的关系为DE=BE-AD【考点】此题需要考查了全等三角形的判定与性质,也利用了直角三角形的性质,是一个探究性题目,对于学生的能力要求比较高2、见解析【解析】【分析】由AB=CD,得AC=BD,再利用SAS证明AECDFB,即可得结论【详解】证明:,在和中,【考点】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键3、见解析【解析】【分析】根据两直线平行,内错角相等可得,然后利用“角角边”证明和全等,根据全等三角形对应边相等解

    22、答;【详解】解:,在和中,即的长就是、两点之间的距离【考点】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键4、见解析【解析】【分析】根据角平分线的性质证明BACDAE,即可得到结果;【详解】证明:AC是BAE的平分线,BACDAE,CE,ABADBACDAE(AAS),BCDE【考点】本题主要考查了三角形的全等判定及性质,准确利用角平分线的进行计算是解题的关键5、 (1)见解析(2)90;见解析【解析】【分析】(1)先推出CAD=BAE,C=ABC=45,然后证明CADBAE得到ABE=C=45,则EBC=ABE+ABC=90,即EBCD;(2)同理可证BAECAD,得到

    23、ABE=ACD,再由EMC=EBC+BCD,得到EMC=ABE+ABC+ACD+BCD=90;如图,过点A作AGBE于G,AFCD于F,由BAECAD,得到AG=AF,证明RtAGMRtAFM得到AMG=AMF,即AM平分EMC(1)解:ABC与ADE均为等腰直角三角形,且BACDAE90,AB=AC,AE=AD,DAE+DAB=CAB+DAB,CAD=BAE,C=ABC=45,CADBAE(SAS),ABE=C=45,EBC=ABE+ABC=90,即EBCD;(2)解:同理可证BAECAD,ABC=ACB=90,ABE=ACD,EMC=EBC+BCD,EMC=ABE+ABC+ACD+BCD=90;如图,过点A作AGBE于G,AFCD于F,BAECAD,AG=AF,在RtAGM和RtAFM中,RtAGMRtAFM(HL),AMG=AMF,即AM平分EMC【考点】本题主要考查了全等三角形的性质与判定,三角形外角的性质,熟知全等三角形的性质与判定条件是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版八年级数学上册第十二章全等三角形专题练习练习题(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-877364.html
    相关资源 更多
  • 小升初基础知识填空题专项练习及答案【全国通用】.docx小升初基础知识填空题专项练习及答案【全国通用】.docx
  • 小升初基础知识填空题专项练习及答案【全优】.docx小升初基础知识填空题专项练习及答案【全优】.docx
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题三 第1讲 三角函数的图象与性质(共37张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题三 第1讲 三角函数的图象与性质(共37张PPT).ppt
  • 小升初基础知识填空题专项练习及完整答案(考点梳理).docx小升初基础知识填空题专项练习及完整答案(考点梳理).docx
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:第二讲 填空题技法指导(共18张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:第二讲 填空题技法指导(共18张PPT).ppt
  • 小升初基础知识填空题专项练习及完整答案(网校专用).docx小升初基础知识填空题专项练习及完整答案(网校专用).docx
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题五 第2讲 点、直线、平面之间的位置关系(共45张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题五 第2讲 点、直线、平面之间的位置关系(共45张PPT).ppt
  • 小升初基础知识填空题专项练习及完整答案(精品).docx小升初基础知识填空题专项练习及完整答案(精品).docx
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题九 第2讲 数形结合思想(共34张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题九 第2讲 数形结合思想(共34张PPT).ppt
  • 小升初基础知识填空题专项练习及完整答案(有一套).docx小升初基础知识填空题专项练习及完整答案(有一套).docx
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题三 第2讲 三角变换、平面向量与解三角形(共34张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题三 第2讲 三角变换、平面向量与解三角形(共34张PPT).ppt
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题七 第1讲 计数原理(共29张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题七 第1讲 计数原理(共29张PPT).ppt
  • 小升初基础知识填空题专项练习及完整答案(易错题).docx小升初基础知识填空题专项练习及完整答案(易错题).docx
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题一 第3讲 复数、框图、合情推理(共30张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题一 第3讲 复数、框图、合情推理(共30张PPT).ppt
  • 2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题一 第1讲 集合与常用逻辑用语(共32张PPT).ppt2014年高考数学(理科人教版)二轮专题整合突破复习课件:专题一 第1讲 集合与常用逻辑用语(共32张PPT).ppt
  • 小升初基础知识填空题专项练习及完整答案(必刷).docx小升初基础知识填空题专项练习及完整答案(必刷).docx
  • 2014年高考数学(浙江专用 理)二轮专题突破课件:2.ppt2014年高考数学(浙江专用 理)二轮专题突破课件:2.ppt
  • 2014年高考数学(浙江专用 理)二轮专题突破课件:1.ppt2014年高考数学(浙江专用 理)二轮专题突破课件:1.ppt
  • 小升初基础知识填空题专项练习及完整答案(夺冠系列).docx小升初基础知识填空题专项练习及完整答案(夺冠系列).docx
  • 小升初基础知识填空题专项练习及完整答案(名校卷).docx小升初基础知识填空题专项练习及完整答案(名校卷).docx
  • 小升初基础知识填空题专项练习及完整答案(各地真题).docx小升初基础知识填空题专项练习及完整答案(各地真题).docx
  • 小升初基础知识填空题专项练习及完整答案(历年真题).docx小升初基础知识填空题专项练习及完整答案(历年真题).docx
  • 2014年高考数学(新课标理)题型全归纳课件:第九章 直线和圆的方程第4节.ppt2014年高考数学(新课标理)题型全归纳课件:第九章 直线和圆的方程第4节.ppt
  • 小升初基础知识填空题专项练习及完整答案(典优).docx小升初基础知识填空题专项练习及完整答案(典优).docx
  • 小升初基础知识填空题专项练习及完整答案(全国通用).docx小升初基础知识填空题专项练习及完整答案(全国通用).docx
  • 2014年高考数学(新课标理)题型全归纳课件:第四章 三角函数第3~4节.ppt2014年高考数学(新课标理)题型全归纳课件:第四章 三角函数第3~4节.ppt
  • 2014年高考数学(新课标理)题型全归纳课件:第十六章 选讲内容第2,3节.ppt2014年高考数学(新课标理)题型全归纳课件:第十六章 选讲内容第2,3节.ppt
  • 小升初基础知识填空题专项练习及完整答案【考点梳理】.docx小升初基础知识填空题专项练习及完整答案【考点梳理】.docx
  • 2014年高考数学(新课标理)题型全归纳课件:第十二章 计数原理第2节排列.ppt2014年高考数学(新课标理)题型全归纳课件:第十二章 计数原理第2节排列.ppt
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1