全国通用2022版高考数学考前三个月复习冲刺专题3第9练顾全局_函数零点问题理.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 通用 2022 高考 数学 考前 三个月 复习 冲刺 专题 顾全 函数 零点 问题
- 资源描述:
-
1、第9练顾全局函数零点问题题型分析高考展望函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围.常考题型精析题型一零点个数与零点区间问题例1(1)(2022湖北)已知f(x)是定义在R上的奇函数,当x0时,f(x)x23x,则函数g(x)f(x)x3的零点的集合为()A.1,3 B.3,1,1,3C.2,1,3 D.2,1,3(2)(2022北京)设函数f(x)若a1,则f(x)的最小值为_;若f(x)恰有2个零点,则实数a的取值范围是_.点评确定函数零点的常用方法:(1)若方
2、程易求解时,用解方程判定法;(2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.变式训练1(2022东营模拟)x表示不超过x的最大整数,例如2.92,4.15.已知f(x)xx(xR),g(x)log4(x1),则函数h(x)f(x)g(x)的零点个数是()A.1 B.2C.3 D.4题型二由函数零点求参数范围问题例2(2022天津)已知函数f(x) 若函数yf(x)a|x|恰有4个零点,则实数a的取值范围为_.点
3、评利用函数零点的情况求参数值或取值范围的方法:(1)利用零点存在性定理构建不等式求解.(2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.变式训练2(2022北京东城区模拟)函数f(x)是定义在R上的偶函数,且满足f(x2)f(x).当x0,1时,f(x)2x.若在区间2,3上方程ax2af(x)0恰有四个不相等的实数根,则实数a的取值范围是_.高考题型精练1.已知x1,x2是函数f(x)e-x|ln x|的两个零点,则()A.x1x21 B.1x1x2eC.1x1x210 D.ex1x20,则a的取值范围是()A.(2,) B
4、.(,2)C.(1,) D.(,1)7.定义在R上的奇函数f(x),当x0时,f(x)则关于x的函数F(x)f(x)a(0a0,且a1),当2a3b4时,函数f(x)的零点x0(n,n1),nN*,则n_.10.方程2xx23的实数解的个数为_.11.(2022江苏)已知函数f(x)|ln x|,g(x)则方程|f(x)g(x)|1实根的个数为_.12.已知f(x)是以2为周期的偶函数,当x0,1时,f(x)x,且在1,3内,关于x的方程f(x)kxk1 (kR,k1)有四个根,则k的取值范围是_.答案精析第9练顾全局函数零点问题常考题型精析例1(1)D(2)12,)解析(1)令x0,所以f(
5、x)(x)23xx23x.因为f(x)是定义在R上的奇函数,所以f(x)f(x).所以当x0时,f(x)x23x.所以当x0时,g(x)x24x3.令g(x)0,即x24x30,解得x1或x3.当x0(舍去)或x2.所以函数g(x)有三个零点,故其集合为2,1,3.(2)当a1时,f(x)当x1时,f(x)2x1(1,1),当x1时,f(x)4(x23x2)41,f(x)min1.由于f(x)恰有2个零点,分两种情况讨论:当f(x)2xa,x1没有零点时,a2或a0.当a2时,f(x)4(xa)(x2a),x1时,有2个零点;当a0时,f(x)4(xa)(x2a),x1时无零点.因此a2满足题
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-913088.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2019-2020学年粤教版高中语文必修四课件:2 论“雅而不高” .ppt
