基础强化人教版九年级数学上册第二十二章二次函数综合练习试卷(含答案详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基础 强化 人教版 九年级 数学 上册 第二十二 二次 函数 综合 练习 试卷 答案 详解
- 资源描述:
-
1、人教版九年级数学上册第二十二章二次函数综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在同一平面直角坐标系内,二次函数与一次函数的图象可能是()ABCD2、已知抛物线经过点,那么下列各点中,该抛物
2、线必经过的点是()ABCD3、在同一直角坐标系中,一次函数ykx+1与二次函数yx2+k的大致图象可以是()ABCD4、在下列关于x的函数中,一定是二次函数的是( )Ay=x2By=ax2+bx+cCy=8xDy=x2(1+x)5、在同一坐标系中,二次函数与一次函数的图像可能是()ABCD6、二次函数y=x2+px+q,当0x1时,此函数最大值与最小值的差()A与p、q的值都有关B与p无关,但与q有关C与p、q的值都无关D与p有关,但与q无关7、二次函数的图象如图所示,对称轴是直线下列结论:;(为实数)其中结论正确的个数为()A1个B2个C3个D4个8、在平面直角坐标系中,对于点,若,则称点P
3、为“同号点”,下列函数的图象上不存在“同号点”的是()ABCD9、某超市销售一种商品,每件成本为元,销售人员经调查发现,该商品每月的销售量(件)与销售单价(元)之间满足函数关系式,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?()A元,元B元,元C元,元D元,元10、如图,抛物线的对称轴为直线,若关于的一元二次方程(为实数)在的范围内有解,则的取值错误的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若某二次函数图象的形状与抛物线y3x2相同,且顶点坐标为(0,2),则它的表达式为_2、二次函数的最大值是_
4、3、某商场经营一种小商品,已知购进时单价是20元调查发现:当销售单价是30元时,月销售量为280件而销售单价每上涨1元,月销售量就减少10件,当月销售利润最大时,销售单价为_元4、已知函数y(2k)x2+kx+1是二次函数,则k满足_5、二次函数的部分图象如图所示,由图象可知,方程的解为_;不等式的解集为_三、解答题(5小题,每小题10分,共计50分)1、超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元(1)求苹果的进价(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克写出购进
5、苹果的支出y(元)与购进数量x(千克)之间的函数关系式(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量(利润销售收入购进支出)2、若二次函数图像经过,两点,求、的值.3、某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高元(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元
6、?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?4、如图,抛物线与轴交于两点,与轴交于点,且,.(1)求抛物线的表达式;(2)点是抛物线上一点在抛物线的对称轴上,求作一点,使得的周长最小,并写出点的坐标;连接并延长,过抛物线上一点(点不与点重合)作轴,垂足为,与射线交于点,是否存在这样的点,使得,若存在,求出点的坐标;若不存在,请说明理由5、抛物线过点,点,顶点为(1)求抛物线的表达式及点的坐标;(2)如图1,点在抛物线上,连接并延长交轴于点,连接,若是以为底的等腰三角形,求点的坐标;(3)如图2,在(2)的条件下,点是线段上(与点,不重合)的动点
7、,连接,作,边交轴于点,设点的横坐标为,求的取值范围-参考答案-一、单选题1、C【解析】【分析】根据一次函数和二次函数的图象和性质,分别判断a,b的符号,利用排除法即可解答【详解】解:A、由一次函数图象可知,a0,b0,由二次函数图象可知,a0,b0,不符合题意;B、由一次函数图象可知,a0,b0,由二次函数图象可知,a0,b0,不符合题意;C、由一次函数图象可知,a0,b0,由二次函数图象可知,a0,b0,符合题意;D、由一次函数图象可知,a0,b=0,由二次函数图象可知,a0,b0,不符合题意;故选:C【考点】本题考查二次函数的图象和一次函数的图象,解题的关键是明确一次函数和二次函数的性质
8、2、B【解析】【分析】将已知点的坐标代入确定抛物线的解析式,再计算出自变量为0时所对应的函数值即可求解【详解】解:抛物线经过点,物线的解析式为:,时,抛物线必经过的点是故选:B【考点】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式,解题的关键是明确题意,利用二次函数的性质解答3、A【解析】【分析】二次函数图象与y轴交点的位置可确定k的正负,再利用一次函数图象与系数的关系可找出一次函数y=-kx+1经过的象限,对比后即可得出结论【详解】解:由yx2+k可知抛物线的开口向上,故B不合题意;二次函数yx2+k与y轴交于负半轴,则k0,k0,一次函数ykx+1的图象经过经过第
9、一、二、三象限,A选项符合题意,C、D不符合题意;故选:A【考点】本题考查了二次函数的图象、一次函数图象以及一次函数图象与系数的关系,根据二次函数的图象找出每个选项中k的正负是解题的关键4、A【解析】【分析】根据二次函数的定义:y=ax2+bx+c(a0a是常数),可得答案【详解】解:A、y=x2是二次函数,故A符合题意;B、a=0时不是二次函数,故B不符合题意,C、y=8x是一次函数,故C不符合题意;D、y=x2(1+x)不是二次函数,故D不符合题意;故选A【考点】本题考查了二次函数的定义,利用二次函数的定义是解题关键,注意a是不等于零的常数5、C【解析】【分析】直线与抛物线联立解方程组,若
10、有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y左侧,a,b同号,对称轴在y轴右侧a,b异号,以及当a大于0时开口向上,当a小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y轴于正半轴,常数项为负,交y轴于负半轴如此分析下来,二次函数与一次函数无矛盾者为正确答案【详解】解:由方程组得ax2a,a0x21,该方程无实数根,故二次函数与一次函数图象无交点,排除BA:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;但是一次函数b为一次项系数,
11、图象显示从左向右上升,b0,两者矛盾,故A错;C:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;b为一次函数的一次项系数,图象显示从左向右下降,b0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错故选C【考点】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上6、D【解析】【分析】分别求出函数解析式的最小值、当0x1时端点值即:当x=0和x=1时的函数值由二次函数性质可知此函数最大值与最小值必是其中的两个,通过比较可知差值与p有关,但与q
12、无关【详解】解:依题意得:当时,端点值,当时,端点值,当时,函数最小值,由二次函数的最值性质可知,当0x1时,此函数最大值和最小值是、其中的两个,所以最大值与最小值的差可能是或 或,故其差只含p不含q,故与p有关,但与q无关故选:【考点】本题考查了二次函数的最值问题,掌握二次函数的性质、灵活运用配方法是解题的关键7、C【解析】【分析】由抛物线开口方向得到,对称轴在轴右侧,得到与异号,又抛物线与轴正半轴相交,得到,可得出,选项错误;把代入中得,所以正确;由时对应的函数值,可得出,得到,由,得到,选项正确;由对称轴为直线,即时,有最小值,可得结论,即可得到正确【详解】解:抛物线开口向上,抛物线的对
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
