分享
分享赚钱 收藏 举报 版权申诉 / 31

类型基础强化人教版九年级数学上册第二十二章二次函数综合练习试题(解析版).docx

  • 上传人:a****
  • 文档编号:958349
  • 上传时间:2025-12-19
  • 格式:DOCX
  • 页数:31
  • 大小:792.07KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    基础 强化 人教版 九年级 数学 上册 第二十二 二次 函数 综合 练习 试题 解析
    资源描述:

    1、人教版九年级数学上册第二十二章二次函数综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知二次函数的图象上有两点A(x1,2023)和B(x2,2023),则当时,二次函数的值是()A2020B2

    2、021C2022D20232、在同一直角坐标系中,一次函数ykx+1与二次函数yx2+k的大致图象可以是()ABCD3、函数yax与yax2+a(a0)在同一直角坐标系中的大致图象可能是()ABCD4、如图,已知点M为二次函数图象的顶点,直线分别交x轴,y轴于点A,B点M在内,若点,都在二次函数图象上,则,的大小关系是()ABCD5、将抛物线C1:y(x3)22向左平移3个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()Ayx22Byx22Cyx22Dyx226、根据下列表格的对应值:x6.176.186.196.20ax2bxc0.020.010.01

    3、0.04判断方程ax2bxc0(a0,a,b,c为常数)一个解x的取值范围是()A6x6.17B6.17x6.18C6.18x6.19D6.19x6.207、已知抛物线P:,将抛物线P绕原点旋转180得到抛物线,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,则a的取值范围是()ABCD8、已知抛物线的对称轴在轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则的值是()A或2BC2D9、把函数的图象向右平移1个单位长度,平移后图象的函数解析式为()ABCD10、矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式

    4、及其自变量x的取值范围均正确的是()Ay=x2+6x(3x6)By=x2+12x(0x12)Cy=x2+12x(6x12)Dy=x2+6x(0x6)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知函数y的图象如图所示,若直线ykx3与该图象有公共点,则k的最大值与最小值的和为 _2、下列关于二次函数(为常数)的结论,该函数的图象与函数的图象形状相同;该函数的图象一定经过点;当时,y随x的增大而减小;该函数的图象的顶点在函数的图像上,其中所有正确的结论序号是_3、如图,ABC90,AC6,以AB为边长向外作等边ABM,连CM,则CM的最大值为 _4、如图,二次函数y=

    5、ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中:c=3;2a+b=0;8a-b+c0;方程ax2+bx+c=0的其中一个根在2,3之间,正确的有_(填序号)5、某超市购进一批单价为8元的生活用品,如果按每件9元出售,那么每天可销售20件经调查发现,这种生活用品的销售单价每提高1元,其销售量相应减少4件,那么将销售价定为_元时,才能使每天所获销售利润最大三、解答题(5小题,每小题10分,共计50分)1、已知,如图,在RtABC中,C90,A60,AB12cm,点P从点A沿AB以每秒2cm的速度向点B运动,点Q从点C以每秒1cm的速度向点A运动,设点P、Q

    6、分别从点A、C同时出发,运动时间为t(秒)(0t6),回答下列问题:(1)直接写出线段AP、AQ的长(含t的代数式表示):AP_,AQ_;(2)设APQ 的面积为S,写出S与t的函数关系式;(3)如图,连接PC,并把PQC沿QC翻折,得到四边形,那么是否存在某一时间t,使四边形为菱形?若存在,求出此时t的值;若不存在,说明理由2、如图,直角三角形中,为中点,将绕点旋转得到一动点从出发,以每秒1的速度沿的路线匀速运动,过点作直线,使(1)当点运动2秒时,另一动点也从出发沿的路线运动,且在上以每秒1的速度匀速运动,在上以每秒2的速度匀速运动,过作直线使,设点的运动时间为秒,直线与截四边形所得图形的

    7、面积为,求关于的函数关系式,并求出的最大值(2)当点开始运动的同时,另一动点从处出发沿的路线运动,且在上以每秒的速度匀速运动,在上以每秒2的速度匀度运动,是否存在这样的,使为等腰三角形?若存在,直接写出点运动的时间的值,若不存在请说明理由3、如图,抛物线与直线分别相交于、两点,其中点在轴上,且此抛物线与轴的一个交点为(1)求抛物线的解析式(2)在抛物线对称轴上找一点,使的周长最小,请求出这个周长的最小值4、如图1,抛物线y=ax2+bx+3交x轴于点A(1,0)和点B(3,0)(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上求四边形

    8、ACFD的面积;点P是线段AB上的动点(点P不与点A、B重合),过点P作PQx轴交该抛物线于点Q,连接AQ、DQ,当AQD是直角三角形时,求出所有满足条件的点Q的坐标5、根据下列条件,求二次函数的解析式(1)图象经过(0,1),(1,2),(2,3)三点;(2)图象的顶点(2,3),且经过点(3,1);-参考答案-一、单选题1、C【解析】【分析】根据A、B两点纵坐标一样,且都在函数图像上,得出x1、x2是方程2020x2+2021x+2022=2023的两个根,由韦达定理得到,代入解析式即可得解【详解】解:二次函数的图象上有两点A(,2023)和B(,2023),、是方程的两个根,当时,有:,

    9、故选C【考点】本题考查了二次函数与一元二次方程的关系、韦达定理;关键在于能发现题干所给条件的特点,会运用韦达定理2、A【解析】【分析】二次函数图象与y轴交点的位置可确定k的正负,再利用一次函数图象与系数的关系可找出一次函数y=-kx+1经过的象限,对比后即可得出结论【详解】解:由yx2+k可知抛物线的开口向上,故B不合题意;二次函数yx2+k与y轴交于负半轴,则k0,k0,一次函数ykx+1的图象经过经过第一、二、三象限,A选项符合题意,C、D不符合题意;故选:A【考点】本题考查了二次函数的图象、一次函数图象以及一次函数图象与系数的关系,根据二次函数的图象找出每个选项中k的正负是解题的关键3、

    10、D【解析】【分析】先根据一次函数的性质确定a0与a0两种情况分类讨论抛物线的顶点位置即可得出结论【详解】解:函数yax与yax2+a(a0)A. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是交y轴正半轴,故选项A不正确;B. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是在坐标原点上,故选项B不正确;C. 函数yax图形可得a0,则yax2+a(a0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴,故选项C不正确;D. 函数yax图形可得a0,则ya

    11、x2+a(a0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴正确,故选项D正确;故选D【考点】本题考查的知识点是一次函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键4、A【解析】【分析】根据题意确定出的取值范围,然后根据二次函数的性质即可得出,的大小关系【详解】解:点M为二次函数图象的顶点,点,直线分别交x轴,y轴于点A,B,令,解得:,令,解得:,点M在内,解得:,抛物线开口向下,与对称轴距离越近,其值越大;与对称轴距离越远,其值越小;对称轴在之间,比距离对称轴更近,故选:A【考点】本题考查了二次函数的性质,一次函数的图像与坐标轴的交点问题,熟知一次函数的与二次

    12、函数的性质是解本题的关键5、D【解析】【分析】根据抛物线C1的解析式得到顶点坐标,利用二次函数平移的规律:左加右减,上加下减,并根据平移前后二次项的系数不变可得抛物线C2的顶点坐标,再根据关于x轴对称的两条抛物线的顶点横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C3所对应的解析式【详解】解:抛物线 C 1:y(x3)22,其顶点坐标为(3,2)向左平移3个单位长度,得到抛物线C2抛物线C2的顶点坐标为(0,2)抛物线C2与抛物线C3关于 x轴对称抛物线C3的横坐标不变,纵坐标互为相反数,二次项系数互为相反数抛物线C3的顶点坐标为(0,2),二次项系数为1抛物线C3的解析式为y

    13、x22故选:D【考点】本题主要考查了二次函数图象的平移、对称问题,熟练掌握平移的规律以及关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数是解题的关键6、C【解析】【分析】根据在6.18和6.19之间有一个值能使ax2+bx+c的值为0,于是可判断方程ax2+bx+c=0一个解x的范围【详解】解:由 ,得 时 随 的增大而增大,得 时, ,时, ,的一个解x的取值范围是 ,故选:C【考点】本题考查了估算一元二次方程的近似解,解答此题的关键是利用函数的增减性7、A【解析】【分析】先求出抛物线的解析式,再列出不等式,求出其解集或,从而可得当x=1时,有成立,最后求出

    14、a的取值范围【详解】解:抛物线P:,将抛物线P绕原点旋转180得到抛物线,抛物线P与抛物线关于原点对称,设点(x,y)在抛物线P上,则点(-x,-y)一定在抛物线P上,抛物线的解析式为,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,即令,解得:或,设,开口向下,且与x轴的两个交点为(0,0),(4a,0),即当时,要恒成立,此时,当x=1时,即可,得:,解得:,又故选A【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质8、B【解析】【分析】根据二次函数图象左加右减,上加下减

    15、的平移规律进行解答即可【详解】解:函数向右平移3个单位,得:;再向上平移1个单位,得:+1,得到的抛物线正好经过坐标原点+1即解得:或抛物线的对称轴在轴右侧00故选:B【考点】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减9、C【解析】【分析】抛物线在平移时开口方向不变,a不变,根据图象平移的口诀“左加右减、上加下减”即可解答【详解】把函数的图象向右平移1个单位长度,平移后图象的函数解析式为,故选:C【考点】本题考查了二次函数图象与几何变换,解答的重点在于熟练掌握图象平移时函数表达式的变化特点10、D【解析】【分析】已知一边长为xcm,则另一边长为(6-x)cm,根据

    16、矩形的面积公式即可解答【详解】解:已知一边长为xcm,则另一边长为(6-x)cm则y=x(6-x)化简可得y=-x2+6x,(0x6),故选:D【考点】此题主要考查了根据实际问题列二次函数关系式的知识,解题的关键是用x表示出矩形的另一边,此题难度一般二、填空题1、17【解析】【分析】根据题意可知,当直线经过点(1,12)时,直线y=kx-3与该图象有公共点;当直线与抛物线只有一个交点时,(x-5)2+8=kx-3,可得出k的最大值是15,最小值是2,即可得它们的和为17【详解】解:当直线经过点(1,12)时,12=k-3,解得k=15;当直线与抛物线只有一个交点时,(x-5)2+8=kx-3,

    17、整理得x2-(10+k)x+36=0,10+k=12,解得k=2或k=-22(舍去),k的最大值是15,最小值是2,k的最大值与最小值的和为15+2=17故答案为:17【考点】本题考查分段函数的图象与性质,一次函数图象上点的坐标特征,结合图象求出k的最大值和最小值是解题的关键2、【解析】【分析】两个二次函数可以通过平移得到,由此即可得两个函数的图象形状相同;求出当时,y的值即可得;根据二次函数的增减性即可得;先求出二次函数的顶点坐标,再代入函数进行验证即可得【详解】当时,将二次函数的图象先向右平移m个单位长度,再向上平移个单位长度即可得到二次函数的图象;当时,将二次函数的图象先向左平移个单位长

    18、度,再向上平移个单位长度即可得到二次函数的图象该函数的图象与函数的图象形状相同,结论正确对于当时,即该函数的图象一定经过点,结论正确由二次函数的性质可知,当时,y随x的增大而增大;当时,y随x的增大而减小则结论错误的顶点坐标为对于二次函数当时,即该函数的图象的顶点在函数的图象上,结论正确综上,所有正确的结论序号是故答案为:【考点】本题考查了二次函数的图象与性质等知识点,熟练掌握二次函数的图象与性质是解题关键3、#【解析】【分析】过点M作MDBC,交BC的延长线于点D,设ABx,利用勾股定理表示出BC,利用解直角三角形表示出MD,BD,再利用勾股定理求得CM的长,根据配方法利用非负数的性质即可得

    19、到CM的最大值【详解】如图,过点M作MDBC,交BC的延长线于点D, 设ABx,则,ABM是等边三角形,BMABx,ABM60,ABC90,MBD30,MDBC,在RtMDC中,当x218时,CM有最大值,CM的最大值为:故答案为:【考点】本题考查勾股定理以及配方法,掌握配方法求出最值是解题的关键4、【解析】【分析】由二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),即可判断;由抛物线的对称轴为直线x=1,即可判断;抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,即可判断,由抛物线开口向下,得到a0,再由当x=-1时,即可判断【详解】解:二次函数y=ax2+bx+

    20、c的部分图象与y轴的交点为(0,3),c=3,故正确;抛物线的对称轴为直线x=1,即,故正确;抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,抛物线与x轴的另一个交点在2到3之间,故正确;抛物线开口向下,a0,当x=-1时,即,故错误,故答案为:【考点】本题主要考查了二次函数图像的性质,解题的关键在于能够熟练掌握二次函数图像的性质5、11【解析】【分析】根据题意列出二次函数关系式,根据二次函数的性质即可得到结论【详解】解:设销售单价定为元,每天所获利润为元,则,所以将销售定价定为11元时,才能使每天所获销售利润最大,故答案为11【考点】本题考查二次函数的应用,解答本题的关键是明

    21、确题意,列出相应的函数关系式,利用二次函数的性质解答三、解答题1、(1)2t,;(2);(3)存在,t4时,四边形是菱形【解析】【分析】(1)根据A60,AB12cm,得出AC的长,进而得出AP2t,(2)过点P作PHAC于H由AP2t,AHt,得出,从而求得S与t的函数关系式;(3)过点P作PMAC于M,根据菱形的性质得PQPC,则可得出求得t即可【详解】解:(1)在RtABC中,C90,A60,AB12cm,AC6,由题意知:AP2t,故答案为: (2)如图过点P作PHAC于HC90,A60,AB12cm,B30,HPA30,AP2t,AHt, (3)当t4时,四边形PQPC是菱形,理由如

    22、下:证明:如图过点P作PMAC于M,CQt,由(2)可知,AMAPt,QCAM, 由对折可得: 当PCPQ时,四边形是菱形, CMMQAQAC2, 当t4时,四边形是菱形【考点】本题考查的是含的直角三角形的性质,勾股定理的应用,列二次函数关系式,菱形的判定与性质,掌握以上知识是解题的关键2、(1),S的最大值为;(2)存在,m的值为或或或.【解析】【分析】(1)分、和三种情况分别表示出有关线段求得两个变量之间的函数关系即可(2)分两种情形:如图中,由题意点在上运动的时间与点在上运动的时间相等,即当时,当时,当时,分别构建方程求解即可如图中,作于首先证明,根据构建方程即可解决问题【详解】解:(1

    23、)如图中,当时,点与点都在上运动,此时两平行线截平行四边形的面积为如图中,当时,点在上运动,点仍在上运动则,而,故此时两平行线截平行四边形的面积为:,如图中,当时,点和点都在上运动则,此时两平行线截平行四边形的面积为故关于的函数关系式为,当时,S随t增大而增大,当时,S随t增大而增大,当时,S随t增大而减小,当t=8时,S最大,代入可得S=;(2)如图中,由题意点在上运动的时间与点在上运动的时间相等,当时,则有,解得,当时,则有,解得,当时,则有,解得如图中,作于在RtCHR中,四边形是平行四边形,四边形是矩形,当时,则有,解得,综上所述,满足条件的m的值为或或或【考点】本题属于四边形综合题,

    24、考查了平行四边形的性质,多边形的面积,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题3、(1);(2)【解析】【分析】(1)利用的解析式求解的坐标,把,代入,利用待定系数法列方程组,解方程组可得答案;(2)联立两个函数解析式,求解的坐标,线段的长度, 如图,要使的周长最小,则最小,设二次函数与轴的另一交点为,抛物线的对称轴为: 点,连接 交对称轴于 ,此时,最小,再利用勾股定理求解,从而可得答案【详解】.解:(1)抛物线与直线交于轴上一点,令 则 点把,代入得:,解得:,抛物线的解析式是;(2)将直线与二次函数联立得方程组:

    25、 解得:或, ,如图,要使的周长最小,则最小,设二次函数与轴的另一交点为, 抛物线的对称轴为: 点,连接 交对称轴于 ,此时,最小,此时:,的周长最小值为【考点】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,利用轴对称的性质求解三角形的周长的最小值,掌握以上知识是解题的关键4、(1)y=x2+2x+3;(2)S四边形ACFD= 4;Q点坐标为(1,4)或(,)或(,)【解析】【分析】此题涉及的知识点是抛物线的综合应用,难度较大,需要有很好的逻辑思维,解题时先根据已知点的坐标列方程求出函数解析式,然后再根据解析式和已知条件求出四边形的面积和点的坐标【详解】(1)由题意可得,解得

    26、,抛物线解析式为y=x2+2x+3;(2)y=x2+2x+3=(x1)2+4,F(1,4),C(0,3),D(2,3),CD=2,且CDx轴,A(1,0),S四边形ACFD=SACD+SFCD=23+2(43)=4;点P在线段AB上,DAQ不可能为直角,当AQD为直角三角形时,有ADQ=90或AQD=90,i当ADQ=90时,则DQAD,A(1,0),D(2,3),直线AD解析式为y=x+1,可设直线DQ解析式为y=x+b,把D(2,3)代入可求得b=5,直线DQ解析式为y=x+5,联立直线DQ和抛物线解析式可得,解得或,Q(1,4);ii当AQD=90时,设Q(t,t2+2t+3),设直线A

    27、Q的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=(t3),设直线DQ解析式为y=k2x+b2,同理可求得k2=t,AQDQ,k1k2=1,即t(t3)=1,解得t=,当t=时,t2+2t+3=,当t=时,t2+2t+3=,Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,)【考点】此题重点考察学生对于抛物线的综合应用能力,熟练抛物线的图像和性质,四边形面积的计算方法,点坐标的求解方式是解答本题的关键5、(1)y4x27x+1;(2)y2(x2)2+3【解析】【分析】(1)先设出抛物线的解析式为yax2+bx+c,再将点(0,1),(1,2),(2,3)代入解析式

    28、中,即可求得抛物线的解析式;(2)由于已知抛物线的顶点坐标,则可设顶点式ya(x2)23,然后把(3,1)代入求出a的值即可【详解】解:(1)设出抛物线的解析式为yax2+bx+c,将(0,1),(1,2),(2,3)代入解析式,得:,解得:,抛物线解析式为:y4x27x+1;(2)设抛物线解析式为ya(x2)2+3,把(3,1)代入得:a(32)2+31,解得a2,所以抛物线解析式为y2(x2)2+3【考点】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:基础强化人教版九年级数学上册第二十二章二次函数综合练习试题(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-958349.html
    相关资源 更多
  • 2016-2017学年高中政治人教版必修4课件:第二单元 单元主干知识 .ppt2016-2017学年高中政治人教版必修4课件:第二单元 单元主干知识 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精编答案.docx小学一年级数学知识点《20以内的退位减法》必刷题精编答案.docx
  • 2016-2017学年高中政治人教版必修4课件:第三单元 第十课 第二框 创新是民族进步的灵魂 .ppt2016-2017学年高中政治人教版必修4课件:第三单元 第十课 第二框 创新是民族进步的灵魂 .ppt
  • 2016-2017学年高中政治人教版必修4课件:第三单元 第八课 第二框 用发展的观点看问题 .ppt2016-2017学年高中政治人教版必修4课件:第三单元 第八课 第二框 用发展的观点看问题 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精编.docx小学一年级数学知识点《20以内的退位减法》必刷题精编.docx
  • 2016-2017学年高中政治人教版必修4课件:第三单元 第九课 第一框 矛盾是事物发展的源泉和动力 .ppt2016-2017学年高中政治人教版必修4课件:第三单元 第九课 第一框 矛盾是事物发展的源泉和动力 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(考试直接用).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(考试直接用).docx
  • 2016-2017学年高中政治人教版必修4课件:第一单元 第二课 第二框 唯物主义和唯心主义 .ppt2016-2017学年高中政治人教版必修4课件:第一单元 第二课 第二框 唯物主义和唯心主义 .ppt
  • 2016-2017学年高中政治人教版必修4课件:第一单元 第三课 第二框 哲学史上的伟大变革 .ppt2016-2017学年高中政治人教版必修4课件:第一单元 第三课 第二框 哲学史上的伟大变革 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(网校专用).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(网校专用).docx
  • 2016-2017学年高中政治人教版必修4课件:第一单元 第三课 第一框 真正的哲学都是自己时代的精神上的精华 .ppt2016-2017学年高中政治人教版必修4课件:第一单元 第三课 第一框 真正的哲学都是自己时代的精神上的精华 .ppt
  • 2016-2017学年高中政治人教版必修4课件:第一单元 第一课 第一框 生活处处有哲学.ppt2016-2017学年高中政治人教版必修4课件:第一单元 第一课 第一框 生活处处有哲学.ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(精选题).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(精选题).docx
  • 2016-2017学年高中政治人教版必修4课件:第4单元 认识社会与价值选择 .ppt2016-2017学年高中政治人教版必修4课件:第4单元 认识社会与价值选择 .ppt
  • 2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 综合探究 .ppt2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 综合探究 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(突破训练).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(突破训练).docx
  • 2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 第9课 第1框 .ppt2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 第9课 第1框 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(完整版).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(完整版).docx
  • 2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 第7课 第2框 .ppt2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 第7课 第2框 .ppt
  • 2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 第7课 第1框 .ppt2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 第7课 第1框 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(夺分金卷).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(夺分金卷).docx
  • 2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 知识整合梳理 .ppt2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 知识整合梳理 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(夺冠).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(夺冠).docx
  • 2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 .ppt2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 .ppt
  • 2016-2017学年高中政治人教版必修4课件:第2单元 探索世界与追求真理 第6课 第2框 .ppt2016-2017学年高中政治人教版必修4课件:第2单元 探索世界与追求真理 第6课 第2框 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(夺冠系列).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(夺冠系列).docx
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(基础题).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(基础题).docx
  • 2016-2017学年高中政治人教版必修4课件:第2单元 探索世界与追求真理 .ppt2016-2017学年高中政治人教版必修4课件:第2单元 探索世界与追求真理 .ppt
  • 2016-2017学年高中政治人教版必修4课件:第1单元 生活智慧与时代精神 第3课 第2框 .ppt2016-2017学年高中政治人教版必修4课件:第1单元 生活智慧与时代精神 第3课 第2框 .ppt
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1