基础强化人教版九年级数学上册第二十二章二次函数综合练习试题(解析版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基础 强化 人教版 九年级 数学 上册 第二十二 二次 函数 综合 练习 试题 解析
- 资源描述:
-
1、人教版九年级数学上册第二十二章二次函数综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知二次函数的图象上有两点A(x1,2023)和B(x2,2023),则当时,二次函数的值是()A2020B2
2、021C2022D20232、在同一直角坐标系中,一次函数ykx+1与二次函数yx2+k的大致图象可以是()ABCD3、函数yax与yax2+a(a0)在同一直角坐标系中的大致图象可能是()ABCD4、如图,已知点M为二次函数图象的顶点,直线分别交x轴,y轴于点A,B点M在内,若点,都在二次函数图象上,则,的大小关系是()ABCD5、将抛物线C1:y(x3)22向左平移3个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()Ayx22Byx22Cyx22Dyx226、根据下列表格的对应值:x6.176.186.196.20ax2bxc0.020.010.01
3、0.04判断方程ax2bxc0(a0,a,b,c为常数)一个解x的取值范围是()A6x6.17B6.17x6.18C6.18x6.19D6.19x6.207、已知抛物线P:,将抛物线P绕原点旋转180得到抛物线,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,则a的取值范围是()ABCD8、已知抛物线的对称轴在轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则的值是()A或2BC2D9、把函数的图象向右平移1个单位长度,平移后图象的函数解析式为()ABCD10、矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式
4、及其自变量x的取值范围均正确的是()Ay=x2+6x(3x6)By=x2+12x(0x12)Cy=x2+12x(6x12)Dy=x2+6x(0x6)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知函数y的图象如图所示,若直线ykx3与该图象有公共点,则k的最大值与最小值的和为 _2、下列关于二次函数(为常数)的结论,该函数的图象与函数的图象形状相同;该函数的图象一定经过点;当时,y随x的增大而减小;该函数的图象的顶点在函数的图像上,其中所有正确的结论序号是_3、如图,ABC90,AC6,以AB为边长向外作等边ABM,连CM,则CM的最大值为 _4、如图,二次函数y=
5、ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中:c=3;2a+b=0;8a-b+c0;方程ax2+bx+c=0的其中一个根在2,3之间,正确的有_(填序号)5、某超市购进一批单价为8元的生活用品,如果按每件9元出售,那么每天可销售20件经调查发现,这种生活用品的销售单价每提高1元,其销售量相应减少4件,那么将销售价定为_元时,才能使每天所获销售利润最大三、解答题(5小题,每小题10分,共计50分)1、已知,如图,在RtABC中,C90,A60,AB12cm,点P从点A沿AB以每秒2cm的速度向点B运动,点Q从点C以每秒1cm的速度向点A运动,设点P、Q
6、分别从点A、C同时出发,运动时间为t(秒)(0t6),回答下列问题:(1)直接写出线段AP、AQ的长(含t的代数式表示):AP_,AQ_;(2)设APQ 的面积为S,写出S与t的函数关系式;(3)如图,连接PC,并把PQC沿QC翻折,得到四边形,那么是否存在某一时间t,使四边形为菱形?若存在,求出此时t的值;若不存在,说明理由2、如图,直角三角形中,为中点,将绕点旋转得到一动点从出发,以每秒1的速度沿的路线匀速运动,过点作直线,使(1)当点运动2秒时,另一动点也从出发沿的路线运动,且在上以每秒1的速度匀速运动,在上以每秒2的速度匀速运动,过作直线使,设点的运动时间为秒,直线与截四边形所得图形的
7、面积为,求关于的函数关系式,并求出的最大值(2)当点开始运动的同时,另一动点从处出发沿的路线运动,且在上以每秒的速度匀速运动,在上以每秒2的速度匀度运动,是否存在这样的,使为等腰三角形?若存在,直接写出点运动的时间的值,若不存在请说明理由3、如图,抛物线与直线分别相交于、两点,其中点在轴上,且此抛物线与轴的一个交点为(1)求抛物线的解析式(2)在抛物线对称轴上找一点,使的周长最小,请求出这个周长的最小值4、如图1,抛物线y=ax2+bx+3交x轴于点A(1,0)和点B(3,0)(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上求四边形
8、ACFD的面积;点P是线段AB上的动点(点P不与点A、B重合),过点P作PQx轴交该抛物线于点Q,连接AQ、DQ,当AQD是直角三角形时,求出所有满足条件的点Q的坐标5、根据下列条件,求二次函数的解析式(1)图象经过(0,1),(1,2),(2,3)三点;(2)图象的顶点(2,3),且经过点(3,1);-参考答案-一、单选题1、C【解析】【分析】根据A、B两点纵坐标一样,且都在函数图像上,得出x1、x2是方程2020x2+2021x+2022=2023的两个根,由韦达定理得到,代入解析式即可得解【详解】解:二次函数的图象上有两点A(,2023)和B(,2023),、是方程的两个根,当时,有:,
9、故选C【考点】本题考查了二次函数与一元二次方程的关系、韦达定理;关键在于能发现题干所给条件的特点,会运用韦达定理2、A【解析】【分析】二次函数图象与y轴交点的位置可确定k的正负,再利用一次函数图象与系数的关系可找出一次函数y=-kx+1经过的象限,对比后即可得出结论【详解】解:由yx2+k可知抛物线的开口向上,故B不合题意;二次函数yx2+k与y轴交于负半轴,则k0,k0,一次函数ykx+1的图象经过经过第一、二、三象限,A选项符合题意,C、D不符合题意;故选:A【考点】本题考查了二次函数的图象、一次函数图象以及一次函数图象与系数的关系,根据二次函数的图象找出每个选项中k的正负是解题的关键3、
10、D【解析】【分析】先根据一次函数的性质确定a0与a0两种情况分类讨论抛物线的顶点位置即可得出结论【详解】解:函数yax与yax2+a(a0)A. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是交y轴正半轴,故选项A不正确;B. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是在坐标原点上,故选项B不正确;C. 函数yax图形可得a0,则yax2+a(a0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴,故选项C不正确;D. 函数yax图形可得a0,则ya
11、x2+a(a0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴正确,故选项D正确;故选D【考点】本题考查的知识点是一次函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键4、A【解析】【分析】根据题意确定出的取值范围,然后根据二次函数的性质即可得出,的大小关系【详解】解:点M为二次函数图象的顶点,点,直线分别交x轴,y轴于点A,B,令,解得:,令,解得:,点M在内,解得:,抛物线开口向下,与对称轴距离越近,其值越大;与对称轴距离越远,其值越小;对称轴在之间,比距离对称轴更近,故选:A【考点】本题考查了二次函数的性质,一次函数的图像与坐标轴的交点问题,熟知一次函数的与二次
12、函数的性质是解本题的关键5、D【解析】【分析】根据抛物线C1的解析式得到顶点坐标,利用二次函数平移的规律:左加右减,上加下减,并根据平移前后二次项的系数不变可得抛物线C2的顶点坐标,再根据关于x轴对称的两条抛物线的顶点横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C3所对应的解析式【详解】解:抛物线 C 1:y(x3)22,其顶点坐标为(3,2)向左平移3个单位长度,得到抛物线C2抛物线C2的顶点坐标为(0,2)抛物线C2与抛物线C3关于 x轴对称抛物线C3的横坐标不变,纵坐标互为相反数,二次项系数互为相反数抛物线C3的顶点坐标为(0,2),二次项系数为1抛物线C3的解析式为y
13、x22故选:D【考点】本题主要考查了二次函数图象的平移、对称问题,熟练掌握平移的规律以及关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数是解题的关键6、C【解析】【分析】根据在6.18和6.19之间有一个值能使ax2+bx+c的值为0,于是可判断方程ax2+bx+c=0一个解x的范围【详解】解:由 ,得 时 随 的增大而增大,得 时, ,时, ,的一个解x的取值范围是 ,故选:C【考点】本题考查了估算一元二次方程的近似解,解答此题的关键是利用函数的增减性7、A【解析】【分析】先求出抛物线的解析式,再列出不等式,求出其解集或,从而可得当x=1时,有成立,最后求出
14、a的取值范围【详解】解:抛物线P:,将抛物线P绕原点旋转180得到抛物线,抛物线P与抛物线关于原点对称,设点(x,y)在抛物线P上,则点(-x,-y)一定在抛物线P上,抛物线的解析式为,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,即令,解得:或,设,开口向下,且与x轴的两个交点为(0,0),(4a,0),即当时,要恒成立,此时,当x=1时,即可,得:,解得:,又故选A【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质8、B【解析】【分析】根据二次函数图象左加右减,上加下减
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
