分享
分享赚钱 收藏 举报 版权申诉 / 31

类型基础强化人教版九年级数学上册第二十二章二次函数达标测试练习题(含答案解析).docx

  • 上传人:a****
  • 文档编号:958350
  • 上传时间:2025-12-19
  • 格式:DOCX
  • 页数:31
  • 大小:725.14KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    基础 强化 人教版 九年级 数学 上册 第二十二 二次 函数 达标 测试 练习题 答案 解析
    资源描述:

    1、人教版九年级数学上册第二十二章二次函数达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、由二次函数,可知()A其图象的开口向下B其图象的对称轴为直线x=-3C其最小值为1D当x3时,y随x的增大而增

    2、大2、如图所示,将一根长m的铁丝首尾相接围成矩形,则矩形的面积与其一边满足的函数关系是()A正比例函数关系B一次函数关系C二次函数关系D反比例函数关系3、若关于的一元二次方程的两根分别为,则二次函数的对称轴为直线()ABCD4、如图,抛物线与抛物线交于点,且它们分别与轴交于点、过点作轴的平行线,分别与两抛物线交于点、,则以下结论:无论取何值,总是负数;抛物线可由抛物线向右平移3个单位,再向下平移3个单位得到;当时,随着的增大,的值先增大后减小;四边形为正方形其中正确的是()ABCD5、向空中发射一枚炮弹,第秒时的高度为米,且高度与时间的关系为,若此炮弹在第秒与第秒时的高度相等,则在下列时间中炮

    3、弹所在高度最高的是( )A第秒B第秒C第秒D第秒6、二次函数的图象如图所示,对称轴是直线下列结论:;(为实数)其中结论正确的个数为()A1个B2个C3个D4个7、关于二次函数,下列说法正确的是()A图象的对称轴在轴的右侧B图象与轴的交点坐标为C图象与轴的交点坐标为和D的最小值为98、矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式及其自变量x的取值范围均正确的是()Ay=x2+6x(3x6)By=x2+12x(0x12)Cy=x2+12x(6x12)Dy=x2+6x(0x6)9、已知二次函数的图象交轴于两点若其图象上有且只有三点满足,则的值是()A1BC2D410

    4、、二次函数的图象如图所示,则下列结论中不正确的是( )AB函数的最大值为C当时,D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,这是二次函数yx22x3的图象,根据图象可知,函数值小于0时x的取值范围为_2、已知函数y的图象如图所示,若直线ykx3与该图象有公共点,则k的最大值与最小值的和为 _3、已知抛物线与x轴的一个交点为,则代数式的值为_4、若正方体的棱长为,表面积为,则与的关系式为_5、已知函数y(2k)x2+kx+1是二次函数,则k满足_三、解答题(5小题,每小题10分,共计50分)1、已知关于的二次函数(1)求证:不论为何实数,该二次函数的图象与轴总

    5、有两个公共点;(2)若,两点在该二次函数的图象上,直接写出与的大小关系;(3)若将抛物线沿轴翻折得到新抛物线,当时,新抛物线对应的函数有最小值3,求的值2、已知抛物线C:yax24(m1)x3m26m2(1)当a1,m0时,求抛物线C与x轴的交点个数;(2)当m0时,判断抛物线C的顶点能否落在第四象限,并说明理由;(3)当m0时,过点(m,m22m2)的抛物线C中,将其中两条抛物线的顶点分别记为A,B,若点A,B的横坐标分别是t,t2,且点A在第三象限以线段AB为直径作圆,设该圆的面积为S,求S的取值范围3、今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月

    6、份为5.76万人(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有两个景点,售票处出示的三种购票方式如表所示:购票方式甲乙丙可游玩景点和门票价格100元/人80元/人160元/人据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票若丙种门票价格下降10元,求景区六月份的门票总收入;问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?4、在平面直角坐标系中,抛物线的顶点为P,且

    7、与y轴交于点A,与直线交于点B,C(点B在点C的左侧).(1)求抛物线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.当时,请直接写出“W区域”内的整点个数;当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.5、如图,在平面直角坐标系中抛物线y=ax2+bx+2(a0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(,0),直线BC的解析式为(1)求抛物线的解析式;(2)过点A作AD/BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC求四

    8、边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a0)向左平移个单位,已知点M为抛物线y=ax2+bx+2(a0)的对称轴上一动点,点N为平移后的抛物线上一动点在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形,若存在,直接写出点N的坐标;若不存在,请说明理由-参考答案-一、单选题1、C【解析】【分析】根据二次函数的性质,直接根据的值得出开口方向,再利用顶点坐标的对称轴和增减性,分别分析即可【详解】解:由二次函数,可知:,其图象的开口向上,故此选项错误;其图象的对称轴为直线,故此选项错误;其最小值为1,故此选项正确;当时,

    9、随的增大而减小,故此选项错误故选:【考点】此题主要考查了二次函数的性质,同学们应根据题意熟练地应用二次函数性质,这是中考中考查重点知识2、C【解析】【分析】设矩形的一边长为xm,求出矩形面积即可判断【详解】设矩形的一边长为xm,另一边长为(1-x)m,面积用y表示,故选择:C【考点】本题考查列函数关系式,并判断函数的类型,掌握列函数的方法和函数的特征是解题关键3、C【解析】【分析】根据两根之和公式可以求出对称轴公式【详解】解:一元二次方程ax2bxc0的两个根为2和4,x1x2 2二次函数的对称轴为x21故选:C【考点】本题考查了求二次函数的对称轴,要求熟悉二次函数与一元二次方程的关系和两根之

    10、和公式,并熟练运用4、B【解析】【分析】根据非负数的相反数或者直接由图像判断即可;先求抛物线的解析式,再根据抛物线的顶点坐标,判断平移方向和平移距离即可判断;先根据题意得出时,观察图像可知,然后计算,进而根据一次函数的性质即可判断;分别计算出的坐标,根据正方形的判定定理进行判断即可【详解】,无论取何值,总是负数,故正确;抛物线与抛物线交于点,即,解得,抛物线,抛物线的顶点,抛物线的顶点为,将向右平移3个单位,再向下平移3个单位即为,即将抛物线向右平移3个单位,再向下平移3个单位可得到抛物线,故正确;,将代入抛物线,解得,将代入抛物线,解得,从图像可知抛物线的图像在抛物线图像的上方,当,随着的增

    11、大,的值减小,故不正确;设与轴交于点,由可知,当时,即,四边形是平行四边形,四边形是正方形,故正确,综上所述,正确的有,故选:B【考点】本题考查了二次函数图像与性质,一次函数的性质,平移,正方形的判定定理,解题的关键是综合运用以上知识5、C【解析】【分析】根据二次函数图像的对称性,求出对称轴,即可得到答案.【详解】解:根据题意,炮弹在第秒与第秒时的高度相等,抛物线的对称轴为:秒,第12秒距离对称轴最近,上述时间中,第12秒时炮弹高度最高;故选:C.【考点】本题考查了二次函数的性质和对称性,解题的关键是掌握二次函数的对称性进行解题.6、C【解析】【分析】由抛物线开口方向得到,对称轴在轴右侧,得到

    12、与异号,又抛物线与轴正半轴相交,得到,可得出,选项错误;把代入中得,所以正确;由时对应的函数值,可得出,得到,由,得到,选项正确;由对称轴为直线,即时,有最小值,可得结论,即可得到正确【详解】解:抛物线开口向上,抛物线的对称轴在轴右侧,抛物线与轴交于负半轴,错误;当时,把代入中得,所以正确;当时,即,所以正确;抛物线的对称轴为直线,时,函数的最小值为,即,所以正确故选C【考点】本题考查了二次函数图象与系数的关系:二次项系数决定抛物线的开口方向和大小当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时,对称轴在轴左;当与异号时,对称轴在轴右常数项决定

    13、抛物线与轴交点:抛物线与轴交于抛物线与轴交点个数由判别式确定:时,抛物线与轴有2个交点;时,抛物线与轴有1个交点;时,抛物线与轴没有交点7、D【解析】【分析】先把抛物线的解析式化成顶点式,再根据二次函数的性质逐个判断即可【详解】抛物线的对称轴为直线:x=-1,在y轴的左侧,故选项A错误;令x=0,则y=-8,所以图象与轴的交点坐标为,故选项B错误;令y=0,则,解得x1=2,x2=-4,图象与轴的交点坐标为和,故选项C错误;,a=10,所以函数有最小值-9,故选项D正确故选:D【考点】本题考查了二次函数的图象、二次函数的性质和二次函数的最值,能熟记二次函数的性质是解此题的关键8、D【解析】【分

    14、析】已知一边长为xcm,则另一边长为(6-x)cm,根据矩形的面积公式即可解答【详解】解:已知一边长为xcm,则另一边长为(6-x)cm则y=x(6-x)化简可得y=-x2+6x,(0x6),故选:D【考点】此题主要考查了根据实际问题列二次函数关系式的知识,解题的关键是用x表示出矩形的另一边,此题难度一般9、C【解析】【分析】由题意易得点的纵坐标相等,进而可得其中有一个点是抛物线的顶点,然后问题可求解【详解】解:假设点A在点B的左侧,二次函数的图象交轴于两点,令时,则有,解得:,图象上有且只有三点满足,点的纵坐标的绝对值相等,如图所示:,点,;故选C【考点】本题主要考查二次函数的综合,熟练掌握

    15、二次函数的图象与性质是解题的关键10、D【解析】【分析】根据抛物线开口方向、抛物线的对称轴位置和抛物线与y轴的交点位置可判断a、b、c的符号,利用抛物线的对称性可得到抛物线与x轴的另一个交点坐标为(-3,0),从而分别判断各选项【详解】解:抛物线开口向下,a0,抛物线的对称轴为直线x=-1,即b=2a,则b0,抛物线与y轴交于正半轴,c0,则abc0,故A正确;当x=-1时,y取最大值为,故B正确;由于开口向下,对称轴为直线x=-1,则点(1,0)关于直线x=-1对称的点为(-3,0),即抛物线与x轴交于(1,0),(-3,0),当时,故C正确;由图像可知:当x=-2时,y0,即,故D错误;故

    16、选D【考点】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c)二、填空题1、1x3【解析】【分析】根据图象直接可以得出答案【详解】如图,从二次函数yx22x3的图象中可以看出函数值小于0时x的取值范围为:1x3【考点】此题重点考察学生对二次函数图象的理解,抓住图象性质是解题的关键2、17【解析】【分析

    17、】根据题意可知,当直线经过点(1,12)时,直线y=kx-3与该图象有公共点;当直线与抛物线只有一个交点时,(x-5)2+8=kx-3,可得出k的最大值是15,最小值是2,即可得它们的和为17【详解】解:当直线经过点(1,12)时,12=k-3,解得k=15;当直线与抛物线只有一个交点时,(x-5)2+8=kx-3,整理得x2-(10+k)x+36=0,10+k=12,解得k=2或k=-22(舍去),k的最大值是15,最小值是2,k的最大值与最小值的和为15+2=17故答案为:17【考点】本题考查分段函数的图象与性质,一次函数图象上点的坐标特征,结合图象求出k的最大值和最小值是解题的关键3、2

    18、019【解析】【分析】先将点(m,0)代入函数解析式,然后求代数式的值即可得出结果【详解】解:将(m,0)代入函数解析式得,m2-m-1=0,m2-m=1,-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019故答案为:2019【考点】本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入函数解析式得到有关m的代数式的值4、【解析】【分析】正方体有6个面,每一个面都是边长为x的正方形,这6个正方形的面积和就是该正方体的表面积【详解】解:正方体有6个面,每一个面都是边长为x的正方形,表面积故答案为:【考点】本题考查了列二次函数关系式,理解两个变

    19、量之间的关系是得出关系式的关键5、k2【解析】【分析】利用二次函数定义可得2k0,再解不等式即可【详解】解:由题意得:2k0,解得:k2,故答案为:k2【考点】本题主要考查了二次函数的定义,准确分析计算是解题的关键三、解答题1、 (1)见解析(2)(3)的值为1或-5【解析】【分析】()计算判别式的值,得到,即可判定;()计算二次函数的对称轴为:直线,利用当抛物线开口向上时,谁离对称轴远谁大判断即可;()先得到抛物线沿y轴翻折后的函数关系式,再利用对称轴与取值范围的位置分类讨论即可(1)证明:令,则不论为何实数,方程有两个不相等的实数根无论为何实数,该二次函数的图象与轴总有两个公共点(2)解:

    20、二次函数的对称轴为:直线,抛物线开口向上抛物线上的点离对称轴越远对应的函数值越大点到对称轴的距离为:1点到对称轴的距离为:2(3)解:抛物线沿轴翻折后的函数解析式为该抛物线的对称轴为直线若,即,则当时,有最小值解得,若,即,则当时,有最小值-1不合题意,舍去若,则当时,有最小值解得,综上,的值为1或-5【考点】本题考查了抛物线与x轴的交点以及二次函数的最值问题,利用一元二次方程根的判别式判断抛物线与x轴的交点情况;熟练掌握二次函数的最值情况、根据对称轴与取值范围的位置关系来确定二次函数的最值是解本题的关键2、(1)2个;(2)不能,见解析;(3)S5【解析】【分析】(1)由题意可知当a1,m0

    21、时,抛物线的表达式为:yx2+4x+2,80,故C与x轴的交点个数为2;(2)根据题意假设点C在第四象限,则0,且+20,即可求解;(3)由题意可知抛物线的表达式为:y2x24(m1)x+(3m26m+2),则顶点坐标为:(m1,m22m),当m1t时,mt+1,则点A(t,t21);当m1t+1时,mt+3,点B(t+2,t2+4t+3);点A在第三象限,即t0且t210,AB222+(4t+4)216(t+1)2+4,即可求解【详解】解:(1)当a1,m0时,抛物线的表达式为:yx2+4x+2,42-412=80,故C与x轴的交点个数为2个;(2)当m0时,判断抛物线C的顶点为:(,+2)

    22、,假设点C在第四象限,则0,且+20,解得:0且1,故a无解,故顶点不能落在第四象限;(3)将点(m,m22m+2)代入抛物线表达式并整理得:(a2)m20,m0,故a2;则抛物线的表达式为:y2x24(m1)x+(3m26m+2),则顶点坐标为:(m1,m22m),当m1t时,mt+1,则点A(t,t21);当m1t+2时,mt+3,点B(t+2,t2+4t+3);而点A在第三象限,即t0且t210,解得:1t0;yByA4t+40,故点B在点A的右上方,AB222+(4t+4)216(t+1)2+4,1t0时,4AB220;S()2,故S5【考点】本题考查的是二次函数综合运用,涉及到一次函

    23、数的性质、解不等式、圆的基本知识等,综合性强,弄清题意,正确运用相关知识是解题的关键3、(1)20%;(2)798万元,当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元【解析】【分析】(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,则四月份的游客为人,五月份的游客为人,再列方程,解方程可得答案;(2)分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;设丙种门票价格降低元,景区六月份的门票总收入为万元,再列出与的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为

    24、,由题意,得 解这个方程,得(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%(2)由题意,丙种门票价格下降10元,得:购买丙种门票的人数增加:(万人),购买甲种门票的人数为:(万人),购买乙种门票的人数为:(万人),所以:门票收入问;(万元)答:景区六月份的门票总收入为798万元设丙种门票价格降低元,景区六月份的门票总收入为万元,由题意,得化简,得, ,当时,取最大值,为817.6万元 答:当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元【考点】本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键4

    25、、(1)顶点P的坐标为;(2) 6个; ,【解析】【分析】(1)由抛物线解析式直接可求;(2)由已知可知A(0,2),C(2+ ,-2),画出函数图象,观察图象可得;分两种情况求:当a0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,a= ,则a1;当a0时,抛物线定点经过(2,2)时,a=-1,抛物线定点经过(2,1)时,a=-,则-1a-【详解】解:(1)y=ax2-4ax+2a=a(x-2)2-2a, 顶点为(2,-2a);(2)如图,a=2,y=2x2-8x+2,y=-2,A(0,2),C(2+,-2),有6个整数点;当a0时,抛物线定点经过(2,-2)时,a=

    26、1,抛物线定点经过(2,-1)时,; 当时,抛物线顶点经过点(2,2)时,;抛物线顶点经过点(2,1)时,; 综上所述:,【考点】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键5、(1);(2)四边形BECD面积的最大值为,E(,);(3)存在N的坐标为(,)或(,)或(,)【解析】【分析】(1)由直线解析式求得B、C两点坐标,结合A点坐标利用待定系数法进行求解即可;(2)易求AD的解析式为,进而D(,)求得CD的解析式为,进而求出CD与x轴的交点坐标,易求BCD的面积为,设E(x,),表示出SBECD的面积,进而利用二次函数的性质即可求得答案;(3)存在先求出抛物线的

    27、顶点坐标,根据平移规律求平移后抛物线解析式,设M(,m),N(xn,yn),易根据平行四边形对角线互相平分及中点公式分类讨论即可得答案【详解】(1),当x=0时,y=2,当y=0时,解得:x=,所以B(,0),C(0,2),将A(,0),B(,0)代入y=ax2+bx+2,得 ,解得:,所以抛物线的解析式为;(2)AD/BC,设直线AD解析式为:将A(,0)代入得:,解得:m=-,所以AD的解析式为,联立 ,解得:,A(,0),D(,)设CD解析式为y=kx+2,将点D坐标代入得:,解得:k=,所以CD的解析式为:,当y=0时,即,解得:x=,则CD与x轴的交点为(,0)所以SBCD=,设E(

    28、x,),则SBECD=,当x=时,四边形BECD面积最大,其最大值为,此时E(,)(3)存在N的坐标为(,),或(,),或(,)过程如下:,所以抛物线的顶点是(,),将抛物线向左平移个单位,则平移后抛物线解析式为设M(,m),N(xn,yn),当AM为对角线时,则,解得:xn=,代入解析式得yn=所以N(,),如图对角线交点坐标为(0,),M坐标为(,)当AE为对角线时,则,解得:xn=,代入解析式得yn=所以N(,),如图对角线交点坐标为(,),M坐标为(,0)当AN为对角线时,则,解得:xn=,代入解析式得yn=所以N(,)如图对角线交点坐标为(,),M坐标为(,-8)【考点】本题考查了二次函数的综合题,涉及了待定系数法,一次函数图象与坐标轴的交点,二次函数图象的平移,二次函数的最值,平行四边形的性质等,综合性较强,有一定的难度,准确识图,把握并灵活运用相关知识是解题的关键,注意数形结合思想与分类讨论思想的运用

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:基础强化人教版九年级数学上册第二十二章二次函数达标测试练习题(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-958350.html
    相关资源 更多
  • 2016-2017学年高中政治人教版必修4课件:第二单元 单元主干知识 .ppt2016-2017学年高中政治人教版必修4课件:第二单元 单元主干知识 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精编答案.docx小学一年级数学知识点《20以内的退位减法》必刷题精编答案.docx
  • 2016-2017学年高中政治人教版必修4课件:第三单元 第十课 第二框 创新是民族进步的灵魂 .ppt2016-2017学年高中政治人教版必修4课件:第三单元 第十课 第二框 创新是民族进步的灵魂 .ppt
  • 2016-2017学年高中政治人教版必修4课件:第三单元 第八课 第二框 用发展的观点看问题 .ppt2016-2017学年高中政治人教版必修4课件:第三单元 第八课 第二框 用发展的观点看问题 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精编.docx小学一年级数学知识点《20以内的退位减法》必刷题精编.docx
  • 2016-2017学年高中政治人教版必修4课件:第三单元 第九课 第一框 矛盾是事物发展的源泉和动力 .ppt2016-2017学年高中政治人教版必修4课件:第三单元 第九课 第一框 矛盾是事物发展的源泉和动力 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(考试直接用).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(考试直接用).docx
  • 2016-2017学年高中政治人教版必修4课件:第一单元 第二课 第二框 唯物主义和唯心主义 .ppt2016-2017学年高中政治人教版必修4课件:第一单元 第二课 第二框 唯物主义和唯心主义 .ppt
  • 2016-2017学年高中政治人教版必修4课件:第一单元 第三课 第二框 哲学史上的伟大变革 .ppt2016-2017学年高中政治人教版必修4课件:第一单元 第三课 第二框 哲学史上的伟大变革 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(网校专用).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(网校专用).docx
  • 2016-2017学年高中政治人教版必修4课件:第一单元 第三课 第一框 真正的哲学都是自己时代的精神上的精华 .ppt2016-2017学年高中政治人教版必修4课件:第一单元 第三课 第一框 真正的哲学都是自己时代的精神上的精华 .ppt
  • 2016-2017学年高中政治人教版必修4课件:第一单元 第一课 第一框 生活处处有哲学.ppt2016-2017学年高中政治人教版必修4课件:第一单元 第一课 第一框 生活处处有哲学.ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(精选题).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(精选题).docx
  • 2016-2017学年高中政治人教版必修4课件:第4单元 认识社会与价值选择 .ppt2016-2017学年高中政治人教版必修4课件:第4单元 认识社会与价值选择 .ppt
  • 2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 综合探究 .ppt2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 综合探究 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(突破训练).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(突破训练).docx
  • 2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 第9课 第1框 .ppt2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 第9课 第1框 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(完整版).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(完整版).docx
  • 2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 第7课 第2框 .ppt2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 第7课 第2框 .ppt
  • 2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 第7课 第1框 .ppt2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 第7课 第1框 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(夺分金卷).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(夺分金卷).docx
  • 2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 知识整合梳理 .ppt2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 知识整合梳理 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(夺冠).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(夺冠).docx
  • 2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 .ppt2016-2017学年高中政治人教版必修4课件:第3单元 思想方法与创新意识 .ppt
  • 2016-2017学年高中政治人教版必修4课件:第2单元 探索世界与追求真理 第6课 第2框 .ppt2016-2017学年高中政治人教版必修4课件:第2单元 探索世界与追求真理 第6课 第2框 .ppt
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(夺冠系列).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(夺冠系列).docx
  • 小学一年级数学知识点《20以内的退位减法》必刷题精品(基础题).docx小学一年级数学知识点《20以内的退位减法》必刷题精品(基础题).docx
  • 2016-2017学年高中政治人教版必修4课件:第2单元 探索世界与追求真理 .ppt2016-2017学年高中政治人教版必修4课件:第2单元 探索世界与追求真理 .ppt
  • 2016-2017学年高中政治人教版必修4课件:第1单元 生活智慧与时代精神 第3课 第2框 .ppt2016-2017学年高中政治人教版必修4课件:第1单元 生活智慧与时代精神 第3课 第2框 .ppt
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1