分享
分享赚钱 收藏 举报 版权申诉 / 14

类型2022秋高中数学 第六章 导数及其应用 综合训练 新人教B版选择性必修第三册.docx

  • 上传人:a****
  • 文档编号:240272
  • 上传时间:2025-11-21
  • 格式:DOCX
  • 页数:14
  • 大小:134.22KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022秋高中数学 第六章 导数及其应用 综合训练 新人教B版选择性必修第三册 2022 高中数学 第六 导数 及其 应用 综合 训练 新人 选择性 必修 第三
    资源描述:

    1、第六章综合训练一、单项选择题1.(2022天津河东高二期中)下列导数运算正确的是()A.2x=1xxB.(log2x)=1xln2C.(sin 2x)=cos 2xD.(2x)=x2x-12.函数f(x)=x4-2x3的图象在点(1,f(1)处的切线方程为()A.y=-2x-1B.y=-2x+1C.y=2x-3D.y=2x+13.函数f(x)=exsin x在区间0,2上的值域为()A.0,e2B.(0,e2)C.0,e2)D.(0,e24.已知函数f(x)=2x3+ax2+36x-24在x=2处有极值,则该函数的一个单调递增区间是()A.(2,3)B.(3,+)C.(2,+)D.(-,3)5

    2、.已知实数a0,a1,函数f(x)=ax,x0),则y=f(x)()A.在区间1e,1,(1,e)内均有零点B.在区间1e,1,(1,e)内均无零点C.在区间1e,1内有零点,在区间(1,e)内无零点D.在区间1e,1内无零点,在区间(1,e)内有零点7.f(x)是定义在R上的偶函数,当x0时,xf(x)-f(x)0的解集为()A.(-,-3)(3,+)B.(-,-3)(0,3)C.(-3,3)D.(-3,0)(3,+)二、多项选择题8.设函数f(x)=|lnx|,x0,ex(x+1),x0,若函数g(x)=f(x)-b有三个零点,则实数b可取的值可能是()A.0B.12C.1D.29.如图是

    3、函数y=f(x)的导函数y=f(x)的图象,则下面判断正确的有()A.在(-2,1)上f(x)是增函数B.在(3,4)上f(x)是减函数C.在x=-1处取得极小值D.在x=1处取得极大值10.已知函数f(x)=x+12-3x2,则下列说法正确的是()A.f(x)在-2,1上是增函数B.f(x)在值域是-2,4C.方程ff(x)=2有两个实数解D.对于x1,x2(x1x2)满足f(x1)=f(x2),则x1+x22时,f(x)3x-4.20.甲、乙两地相距400千米,汽车从甲地匀速行驶到乙地,速度不得超过100千米/时,已知该汽车每小时的运输成本P(单位:元)关于速度v(单位:千米/时)的函数关

    4、系是P=119200v4-1160v3+15v.(1)求全程运输成本Q(单位:元)关于速度v的函数关系式.(2)为使全程运输成本最少,汽车应以多大速度行驶?并求此时全程运输成本的最小值.21.已知函数f(x)=aex-1-ln x+ln a.(1)当a=e时,求曲线y=f(x)在点(1,f(1)处的切线与两坐标轴围成的三角形的面积;(2)若f(x)1,求a的取值范围.22.已知函数f(x)=ex-a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.参考答案第六章综合训练1.B对于A,2x=2x-12=2-12x-32=-1xx,故A错误;对于B,(

    5、log2x)=1xln2,故B正确;对于C,(sin2x)=2cos2x,故C错误;对于D,(2x)=2xln2,故D错误.故选B.2.B对函数f(x)求导可得f(x)=4x3-6x2,由导数的几何意义知在点(1,f(1)处的切线的斜率为k=f(1)=-2.又因为f(1)=-1,所以切线方程为y-(-1)=-2(x-1),化简得y=-2x+1.3.Af(x)=ex(sinx+cosx).x0,2,f(x)0,f(x)在0,2上单调递增,f(x)min=f(0)=0,f(x)max=f2=e2.4.Bf(x)=6x2+2ax+36.因为f(x)在x=2处有极值,所以f(2)=0,解得a=-15.

    6、令f(x)0,得x3或x2.所以函数的单调递增区间是(-,2),(3,+),只有B符合.5.A函数f(x)在R上单调递增,当x1;当x1时,f(x)=2x-4x2+ax=2x3-4+axx20恒成立,令g(x)=2x3+ax-4,x1,+),则g(x)=6x2+a,a0,g(x)0,即g(x)在1,+)上单调递增,g(x)g(1)=2+a-4=a-2,要使当x1时f(x)0恒成立,则a-20,解得a2.函数f(x)在R上单调递增,还需要满足a11+41+aln1,即a5,综上,实数a的取值范围是2,5.故选A.6.Df(x)=131x=x-33x,令f(x)=0,得x=3,当0x3时,f(x)

    7、0,f(e)=e3-10,所以y=f(x)在区间1e,1内无零点,在区间(1,e)内有零点.7.B设函数g(x)=f(x)x,则g(x)=xf(x)-f(x)x2,当x0时,xf(x)-f(x)0,所以此时g(x)=xf(x)-f(x)x20时单调递减,且f(3)=0.画出函数g(x)=f(x)x的草图(只体现单调性),则不等式f(x)x0的解集为0x3或x-3.即不等式的解集为(-,-3)(0,3).8.BC由题意,函数g(x)=f(x)-b有三个零点,则g(x)=f(x)-b=0,即f(x)=b有三个根,当x0时,f(x)=ex(x+1),则f(x)=ex(x+1)+ex=ex(x+2),

    8、由f(x)0得x+20,即x0得x+20,即-2x0,此时f(x)为增函数,即当x=-2时,f(x)取得极小值f(-2)=-1e2,作出f(x)的大致图象如图:要使f(x)=b有三个根,则00,即此时f(x)0,f(x)单调递增,所以A正确;当x-2,1时,f(x)0,当x(1,2时,f(x)0,即x(-2,1)时,函数是增函数,x(1,2)时,函数是减函数,f(x)max=f(1)=4,最小值在x=-2或x=2时取得,f(2)=2,f(-2)=-2,所以最小值为-2,所以B正确;ff(x)=2,可得f(x)=2或f(x)=-1,如图,满足题意的x的值有3个,所以C错误;由f(x1)=f(x2

    9、),可知x1(-1,1),x2(1,2),由图可知x1+x20且x1,所以函数f(x)=exlnx的定义域为(0,1)(1,+),所以A不正确;由f(x)=exlnx,当x(0,1)时,lnx0,f(x)0在定义域上有解,所以函数f(x)存在单调递增区间,所以C是正确的;由g(x)=lnx-1x,则g(x)=1x+1x2(x0),所以g(x)0,函数g(x)单调递增,则函数f(x)=0只有一个根x0,使得f(x0)=0,当x(0,x0)时,f(x)0),所以g(x)0,函数g(x)单调递增,且g(1)=-10,所以函数f(x)在(1,2)先减后增,没有最大值,所以E不正确,故选BC.12.1对

    10、函数f(x)=exx+a求导得f(x)=ex(x+a-1)(x+a)2,由题意得f(1)=ea(1+a)2=e4,解得a=1.13.-32依题意,得f(x)=-2sinx+3cosx,故f3=-2sin3+3cos3=-3+32=-32.14.9x+4y-2=0或y=-4由题意可得y=3x2-6x.设该切线切点为(x0,y0),则切线斜率为3x02-6x0,因此切线方程为y=(3x02-6x0)(x-x0)+y0=(3x02-6x0)(x-x0)+x03-3x02.又点(2,-4)在切线上,(3x02-6x0)(2-x0)+x03-3x02=-4,整理,得(2-x0)2(2x0-1)=0,解得

    11、x0=2或x0=12.代入切线方程,化简得y=-4或y=-94x+12,整理得,y=-4或9x+4y-2=0.15.2 cm,1 cm,32 cm设长、宽、高分别为2x,x,h,则4(2x+x+h)=18,h=92-3x,V=2xxh=2x292-3x=-6x3+9x2,由V=0,得x=1或x=0(舍去).x=1是函数V在(0,+)上唯一的极大值点,也是最大值点,故当长、宽、高分别为2cm,1cm,32cm时,体积最大.16.(-,20f(x)=mlnx-x3+32x2-4x+4(x0),f(x)=mx-3x2+3x-4.由于f(x)在(2,+)上单调递减,即f(x)0在(2,+)上恒成立,即

    12、mx-3x2+3x-40在(2,+)上恒成立,设g(x)=3x3-3x2+4x(x2),则m3x3-3x2+4x在(2,+)上恒成立,即mg(x)min在(2,+)上恒成立,g(x)=9x2-6x+4,知=36-4940,g(x)单调递增,mg(x)min=g(2)=323-322+42=20,m20,即实数m的取值范围为(-,20.17.解(1)由函数f(x)=x33+x2,得f(x)=x2+2x.由f(x)=x2+2x0,解得x(-,-2)(0,+),即f(x)在-1,0上单调递减,在0,1上单调递增.所以f(0)f(x)maxf(-1),f(1),且f(0)=0,f(-1)=23,f(1

    13、)=43,故f(x)的值域为0,43.18.解(1)f(x)=6x2-6(a+1)x+6a.f(x)在x=3处取得极值,f(3)=69-6(a+1)3+6a=0,解得a=3.f(x)=2x3-12x2+18x+8.(2)A点在f(x)上,由(1),可知f(x)=6x2-24x+18,f(1)=6-24+18=0,切线方程为y=16.19.解(1)依题意,知函数的定义域为x|x0,f(x)=2x-2x=2(x+1)(x-1)x,由f(x)0,得x1;由f(x)0,得0x2时,g(x)0,g(x)在(2,+)上为增函数,g(x)g(2)=4-2ln2-6+4=2-2ln20,当x2时,x2-2ln

    14、x3x-4,即当x2时,f(x)3x-4.得证.20.解(1)Q=P400v=119200v4-1160v3+15v400v=119200v3-1160v2+15400=v34852v2+6000(0v100).(2)Q=v216-5v,令Q=0,则v=0(舍去)或v=80,当0v80时,Q0,当800,则当v=80时,全程运输成本取得极小值,即最小值,且Qmin=Q(80)=20003.故为使全程运输成本最少,汽车应从80千米/时的速度行驶,此时全程运输成本为20003元.21.解f(x)的定义域为(0,+),f(x)=aex-1-1x.(1)当a=e时,f(x)=ex-lnx+1,f(1)

    15、=e-1,曲线y=f(x)在点(1,f(1)处的切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2.直线y=(e-1)x+2在x轴,y轴上的截距分别为-2e-1,2.因此所求三角形的面积为2e-1.(2)由题意a0,当0a1时,f(1)=a+lna1.当a=1时,f(x)=ex-1-lnx,f(x)=ex-1-1x.当x(0,1)时,f(x)0.所以当x=1时,f(x)取得最小值,最小值为f(1)=1,从而f(x)1.当a1时,f(x)=aex-1-lnx+lnaex-1-lnx1.综上,a的取值范围是1,+).22.解(1)当a=1时,f(x)=ex-x-2,则f(x)=

    16、ex-1.当x0时,f(x)0时,f(x)0.所以f(x)在(-,0)上单调递减,在(0,+)上单调递增.(2)f(x)=ex-a.当a0时,f(x)0,所以f(x)在(-,+)上单调递增,故f(x)至多存在1个零点,不合题意.当a0时,由f(x)=0可得x=lna.当x(-,lna)时,f(x)0.所以f(x)在(-,lna)上单调递减,在(lna,+)上单调递增,故当x=lna时,f(x)取得最小值,最小值为f(lna)=-a(1+lna).若01e,则f(lna)0,所以f(x)在(-,lna)上存在唯一零点.由(1)知,当x2时,ex-x-20,所以当x4且x2ln(2a)时,f(x)=ex2ex2-a(x+2)eln(2a)x2+2-a(x+2)=2a0.故f(x)在(lna,+)上存在唯一零点.从而f(x)在(-,+)上有两个零点.综上,a的取值范围是1e,+.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022秋高中数学 第六章 导数及其应用 综合训练 新人教B版选择性必修第三册.docx
    链接地址:https://www.ketangku.com/wenku/file-240272.html
    相关资源 更多
  • 人教版小学二年级下册数学期中测试卷及参考答案【精练】.docx人教版小学二年级下册数学期中测试卷及参考答案【精练】.docx
  • 新课标2015_2016学年高二数学上学期第三次月考试题理.doc新课标2015_2016学年高二数学上学期第三次月考试题理.doc
  • 2022版高考数学一轮复习 课后限时集训 18 导数的概念及运算(含解析).doc2022版高考数学一轮复习 课后限时集训 18 导数的概念及运算(含解析).doc
  • 人教版小学二年级下册数学期中测试卷及参考答案【突破训练】.docx人教版小学二年级下册数学期中测试卷及参考答案【突破训练】.docx
  • 新课标2015_2016学年高二数学上学期第三次月考试题文.doc新课标2015_2016学年高二数学上学期第三次月考试题文.doc
  • 人教版小学二年级下册数学期中测试卷及参考答案【研优卷】.docx人教版小学二年级下册数学期中测试卷及参考答案【研优卷】.docx
  • 8-3-1 棱柱、棱锥、棱台的表面积和体积——2022-2023学年高一数学人教A版(2019)必修第二册课前导学 含答案.docx8-3-1 棱柱、棱锥、棱台的表面积和体积——2022-2023学年高一数学人教A版(2019)必修第二册课前导学 含答案.docx
  • 新课标2015_2016学年高二数学上学期期末考试试题理.doc新课标2015_2016学年高二数学上学期期末考试试题理.doc
  • 人教版小学二年级下册数学期中测试卷及参考答案【满分必刷】.docx人教版小学二年级下册数学期中测试卷及参考答案【满分必刷】.docx
  • 2022版高考数学一轮复习 课后限时集训 16 函数与方程(含解析).doc2022版高考数学一轮复习 课后限时集训 16 函数与方程(含解析).doc
  • 人教版小学二年级下册数学期中测试卷及参考答案【模拟题】.docx人教版小学二年级下册数学期中测试卷及参考答案【模拟题】.docx
  • 新课标2015_2016学年高二数学上学期期末考试试题文.doc新课标2015_2016学年高二数学上学期期末考试试题文.doc
  • 2022版高考数学一轮复习 课后限时集训 15 函数的图象(含解析).doc2022版高考数学一轮复习 课后限时集训 15 函数的图象(含解析).doc
  • 江苏南京市、盐城市2020届高三上学期第一次模拟考试数学试题含附加题 WORD版含解析.doc江苏南京市、盐城市2020届高三上学期第一次模拟考试数学试题含附加题 WORD版含解析.doc
  • 新课标2015_2016学年高二数学上学期期中试题理.doc新课标2015_2016学年高二数学上学期期中试题理.doc
  • 2022版高考数学一轮复习 课后限时集训 14 对数与对数函数(含解析).doc2022版高考数学一轮复习 课后限时集训 14 对数与对数函数(含解析).doc
  • 人教版小学二年级下册数学期中测试卷及参考答案【新】.docx人教版小学二年级下册数学期中测试卷及参考答案【新】.docx
  • 新课标2015_2016学年高二数学上学期期中试题文.doc新课标2015_2016学年高二数学上学期期中试题文.doc
  • 2022版高考数学一轮复习 课后限时集训 13 指数与指数函数(含解析).doc2022版高考数学一轮复习 课后限时集训 13 指数与指数函数(含解析).doc
  • 人教版小学二年级下册数学期中测试卷及参考答案【巩固】.docx人教版小学二年级下册数学期中测试卷及参考答案【巩固】.docx
  • 2022版高考数学一轮复习 课后限时集训 12 幂函数与二次函数(含解析).doc2022版高考数学一轮复习 课后限时集训 12 幂函数与二次函数(含解析).doc
  • 8-2立体图形的直观图(2)-2022-2023学年必修第二册人教A版高中数学课件.ppt8-2立体图形的直观图(2)-2022-2023学年必修第二册人教A版高中数学课件.ppt
  • 人教版小学二年级下册数学期中测试卷及参考答案【实用】.docx人教版小学二年级下册数学期中测试卷及参考答案【实用】.docx
  • 2022版高考数学一轮复习 课后限时集训 11 函数性质的综合问题(含解析).doc2022版高考数学一轮复习 课后限时集训 11 函数性质的综合问题(含解析).doc
  • 人教版小学二年级下册数学期中测试卷及参考答案【完整版】.docx人教版小学二年级下册数学期中测试卷及参考答案【完整版】.docx
  • 2022版高考数学一轮复习 课后限时集训 10 函数的奇偶性与周期性(含解析).doc2022版高考数学一轮复习 课后限时集训 10 函数的奇偶性与周期性(含解析).doc
  • 人教版小学二年级下册数学期中测试卷及参考答案【夺分金卷】.docx人教版小学二年级下册数学期中测试卷及参考答案【夺分金卷】.docx
  • 2022版高考数学一轮复习 课后限时集训 1 集合(含解析).doc2022版高考数学一轮复习 课后限时集训 1 集合(含解析).doc
  • 人教版小学二年级下册数学期中测试卷及参考答案【基础题】.docx人教版小学二年级下册数学期中测试卷及参考答案【基础题】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1