2022届高中数学 微专题16 含参数函数的单调区间练习(含解析) (2).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高中数学 微专题16 含参数函数的单调区间练习含解析 2 2022 高中数学 专题 16 参数 函数 单调 区间 练习 解析
- 资源描述:
-
1、微专题16 含参数函数的单调区间 在高考导数的综合题中,所给函数往往是一个含参数的函数,且导函数含有参数,在分析函数单调性时面临的分类讨论。本节通过一些例题总结参数讨论的方法与技巧,便于更加快速准确的分析含参数函数的单调区间。一、基础知识:1、导数解单调区间的步骤:利用导数求函数单调区间的方法,大致步骤可应用到解含参函数的单调区间。即确定定义域求出导函数令解不等式得到递增区间后取定义域的补集(减区间)单调性列出表格2、求含参函数单调区间的实质解含参不等式,而定义域对的限制有时会简化含参不等式的求解3、求单调区间首先确定定义域,并根据定义域将导数不等式中恒正恒负的项处理掉,以简化讨论的不等式4、
2、关于分类讨论的时机与分界点的确定(1)分类时机:并不是所有含参问题均需要分类讨论,例如解不等式:,其解集为,中间并没有进行分类讨论。思考:为什么?因为无论参数为何值,均是将移到不等号右侧出结果。所以不需要分类讨论,再例如解不等式,第一步移项得:(同样无论为何值,均是这样变形),但是第二步不等式两边开方时发现的不同取值会导致不同结果,显然是负数时,不等式恒成立,而是正数时,需要开方进一步求解集,分类讨论由此开始。体会:什么时候开始分类讨论?简而言之,当参数的不同取值对下一步的影响不相同时,就是分类讨论开始的时机。所以一道题是否进行分类讨论不是一开始就决定的,而是在做的过程中遇到不同值导致不同步骤
3、和结果,就自然的进行分类讨论。(2)分界点的确定:分类讨论一定是按参数的符号分类么?不一定。要想找好分界点,首先要明确参数在问题中所扮演的角色。例如上面的不等式,所扮演的角色是被开方数,故能否开方是进行下一步的关键,那自然想到按的符号进行分类讨论。(3)当参数取值为一个特定值时,可将其代入条件进行求解(4)当参数扮演多个角色时,则以其中一个为目标进行分类,在每一大类下再考虑其他角色的情况以及是否要进行进一步的分类。 例如:解不等式:,可得:此时扮演两个角色,一个是的系数,将决定解集是小大根之外还是小大根之间,另一个角色是决定的大小,进而要和来角逐大小根。那么在处理时可先以其中一个为主要目标,例
4、如以系数的正负,进行分类。当时,此时不等式的解集为小大根之间,而由于,以此为前提,故小大根不存在问题,解集为当时,不等式变为当时,不等式解集为小大根之外,而,的大小由的取值决定,所以自然考虑再结合小大根进行进一步讨论了。(重视的对比)时,不等式解集为时,不等式化为时,不等式解集为希望通过此例能够体会分类讨论的时机与分界,若能领悟,其分类讨论不再是一个难点,而是有线索可循了。二、典型例题:例1:已知函数,求的单调区间解:定义域 令,所解不等式为当时,即解不等式的单调区间为:当时, 恒成立为增函数:例2:已知函数(1)若的图像在处的切线与直线垂直,求实数的值(2)求函数的单调区间解:(1)由切线与
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
