2022届高考人教数学(理)一轮学案:8-5 椭 圆 WORD版含答案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高考人教数学理一轮学案:8-5 WORD版含答案 2022 高考 数学 一轮 WORD 答案
- 资源描述:
-
1、第五节椭 圆1椭圆的定义(1)平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距(2)集合PM|MF1|MF2|2a,|F1F2|2c,其中a,c为常数且a0,c0.当2a|F1F2|时,M点的轨迹为椭圆;当2a|F1F2|时,M点的轨迹为线段F1F2;当2ab0)1(ab0)性质范围axabybbxbaya对称性对称轴:坐标轴对称中心:原点顶点A1(a,0),A2(a,0)B1(0,b),B2(0,b)A1(0,a),A2(0,a)B1(b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2
2、b焦距|F1F2|2c离心率e(0,1)a,b,c的关系a2b2c21.e与:因为e,所以离心率e越大,则越小,椭圆就越扁;离心率e越小,则越大,椭圆就越圆2点与椭圆的位置关系:已知点P(x0,y0),椭圆1(ab0),则(1)点P(x0,y0)在椭圆内1;(2)点P(x0,y0)在椭圆上1;(3)点P(x0,y0)在椭圆外1.3设椭圆1(ab0)上任意一点P(x,y),则当x0时,|OP|有最小值b,这时,P为短轴端点;当xa时,|OP|有最大值a,这时,P为长轴端点4若点P是椭圆1(ab0)上任意一点,F1、F2是椭圆的左、右焦点,且F1PF2,则SPF1F2b2tan .5过椭圆1(ab
3、0)的焦点F作x轴的垂线,交椭圆于A,B,则|AB|.6椭圆1(ab0)的左、右焦点分别是F1、F2,P(x0,y0)是椭圆上任意一点,则|PF1|aex0,|PF2|aex0.7若P为椭圆1(ab0)上任意一点,则ac|PF|ac.1(基础知识:椭圆的概念)下列说法中正确的个数是()平面内到两定点距离之和为常数是动点的轨迹是椭圆的必要不充分条件;椭圆的离心率越大,椭圆越接近圆;若方程1表示椭圆,则(5k)(k3)0;椭圆的离心率e(0,1).A1 B2C3 D0答案:B2(基础知识:椭圆的定义)已知椭圆1上一点P到椭圆一个焦点F1的距离为3,则P到另一个焦点F2的距离为()A2 B3C5 D
4、7答案:D3(基本方法:椭圆的方程)过点A(3,2)且与椭圆1有相同焦点的椭圆的方程为()A1 B1C1 D1答案:A4(基本能力:椭圆的离心率)已知椭圆1(m0)的离心率e,则m的值为_答案:3或5(基本应用:椭圆的性质)已知点P是椭圆1上y轴右侧的一点,且以点P及焦点F1,F2为顶点的三角形的面积等于1,则点P的坐标为_答案:或题型一椭圆的定义及应用 1已知圆C1:(x4)2y2169,圆C2:(x4)2y29,动圆在圆C1内部且和圆C1相内切,和圆C2相外切,则动圆圆心M的轨迹方程为()A1 B1C1 D1解析:设圆M的半径为r,则|MC1|MC2|(13r)(3r)16,M的轨迹是以C
5、1,C2为焦点的椭圆,且2a16,2c8,故所求的轨迹方程为1.答案:D2(2021河南郑州第二次质量检测)已知椭圆C:1(ab0)的左、右焦点分别为F1、F2,离心率为,过F2的直线l交C于A,B两点若AF1B的周长为12,则椭圆C的标准方程为()Ay21 B1C1 D1解析:由椭圆的定义,知|AF1|AF2|2a,|BF1|BF2|2a,所以AF1B的周长为|AF1|AF2|BF1|BF2|4a12,所以a3.因为椭圆的离心率e,所以c2,所以b2a2c25,所以椭圆C的方程为1.答案:D3设点P为椭圆C:1(a2)上一点,F1,F2分别为C的左、右焦点,且F1PF260,则PF1F2的面
6、积为_解析:由题意知,c.又F1PF260,|F1P|PF2|2a,|F1F2|2,|F1F2|2(|F1P|PF2|)22|F1P|PF2|2|F1P|PF2|cos 604a23|F1P|PF2|4a216,|F1P|PF2|,SPF1F2|F1P|PF2|sin 60.答案:4已知F是椭圆5x29y245的左焦点,P是此椭圆上的动点,A(1,1)是一定点,则|PA|PF|的最大值为_,最小值为_解析:椭圆方程可化为1,设F1是椭圆的右焦点,则F1(2,0),|AF1|,|PA|PF|PA|PF1|6.又|AF1|PA|PF1|AF1|(当且仅当P,A,F1共线时等号成立),|PA|PF|
7、6,|PA|PF|6.答案:665已知动圆M过定点A(3,0)并且与定圆B:(x3)2y264相切,则动圆圆心M的轨迹方程为_解析:因为点A在圆B内,所以过点A的圆与圆B只能内切,因为定圆圆心坐标为B(3,0),所以|AB|6.所以|BM|8|MA|,即|MB|MA|8|AB|,所以动点M的轨迹是以A,B为焦点的椭圆,即a4,c3.故b27.所以椭圆方程为1.答案:1方法总结 椭圆定义应用技巧思路应用解读求方程条件转化后满足椭圆定义,直接求轨迹方程求焦点三角形求焦点三角形周长或面积,根据椭圆定义、正、余弦定理,其中|PF1|PF2|2a.平方是常用技巧求最值利用|PF1|PF2|2a为定值,利
8、用基本不等式求|PF1|PF2|最值或利用三角形求最值如ac、ac 题型二椭圆的标准方程及应用 典例剖析典例(1)(2020福建宁德模拟)一个椭圆的中心在原点,焦点F1,F2在x轴上,P(2,)是椭圆上一点,且|PF1|,|F1F2|,|PF2|成等差数列,则椭圆的方程为()A1 B1C1 D1解析:设椭圆的标准方程为1(ab0).由点P(2,)在椭圆上知1.又|PF1|,|F1F2|,|PF2|成等差数列,则|PF1|PF2|2|F1F2|,即2a22c,又c2a2b2,联立解得a28,b26,故椭圆方程为1.答案:A(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,(,),则椭圆的
9、方程为_解析:设椭圆方程为mx2ny21(m,n0,mn).由解得m,n.椭圆方程为1.答案:1(3)已知椭圆C1:y21,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率,求椭圆C2的方程解析:法一(待定系数法):由已知可设椭圆C2的方程为1(a2),其离心率为,故,解得a4,故椭圆C2的方程为1.法二(椭圆系法):因椭圆C2与C1有相同的离心率,且焦点在y轴上,故设C2:x2k(k0),即1.又222,故k4,故椭圆C2的方程为1.答案:1方法总结求椭圆标准方程的方法方法解读适合题型定义法根据题目的条件,判断是否满足椭圆的定义,若满足,求出相应的a,b,c的值,即可求得方程涉及两焦点的距
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
2021年部编版五年级语文上册第八单元复习课件.pptx
