2022届高考数学一轮复习 第二章 2.2 函数的单调性与最值核心考点 精准研析训练 理(含解析)北师大版.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高考数学一轮复习 第二章 2.2 函数的单调性与最值核心考点 精准研析训练 理含解析北师大版 2022 高考 数学 一轮 复习 第二 函数 调性 核心 考点 精准 研析 训练 解析 北师大
- 资源描述:
-
1、第二章核心考点精准研析考点一函数的单调性(区间)1.下列函数中,在区间(-,0)上是减少的是()A.y=1-x2B.y=x2+2xC.y=-D.y=2.函数f(x)=ln(x2-2x-8) 的单调递增区间是()A.(-,-2)B.(-,1)C.(1,+)D.(4,+)3.设函数f(x)在R上为增函数,则下列结论一定正确的是()A.y=在R上为减函数B.y=|f(x)|在R上为增函数C.y=-在R上为增函数D.y=-f(x)在R上为减函数4.设函数f(x)=g(x)=x2f(x-1),则函数g(x)的递减区间是()A.(-,0B.0,1)C.1,+)D.-1,0【解析】1.选D.对于选项A,该函
2、数是开口向下的抛物线,在区间(-,0上是增加的;对于选项B,该函数是开口向上的抛物线,在区间(-,-1上是减少的,在区间-1,+)上是增加的;对于选项C,在区间(-,0上是增加的;对于选项D,因为y=1+.易知其在(-,1)上为减少的.2.选D.函数有意义,则x2-2x-80,解得:x4,结合二次函数的单调性和复合函数同增异减的原则,可得函数的单调增区间为(4,+).3.选D.特例法:设f(x)=x,则y=的定义域为(-,0)(0,+),在定义域上无单调性,A错;则y=|f(x)|=|x|在R上无单调性,B错;则y=-=-的定义域为(-,0)(0,+),在定义域上无单调性,C错.y=-f(x)
3、=-x在R上为减函数,所以选项D正确.4.选B.因为g(x)=作出函数图像如图所示,所以其递减区间为0,1).判断函数单调性的方法(1)定义法:取值作差变形定号结论.(2)图像法:从左往右看,图像逐渐上升,单调递增;图像逐渐下降,单调递减.(3)利用函数和、差、积、商和复合函数单调性的判断法则.(4)导数法:利用导函数的正负判断函数单调性.其中(2)(3)一般用于选择题和填空题.考点二函数的最值(值域)【典例】1.函数y=的值域是_.2.函数y=x+的最小值为_.3.已知函数f(x)=-(a0,x0),若f(x)在上的值域为,则a=_.世纪金榜导学号【解题导思】序号联想解题1由,想到分离常数2
4、由x+,想到利用函数的单调性或换元法求解3由-,想到反比例函数的单调性【解析】1.(分离常数法)因为y=-1+,又因为1+x21,所以02,所以-10,x0)在上是增加的,所以即解得a=. 答案:求函数最值的常用方法(1)单调性法:先确定函数的单调性,再利用单调性求最值.(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(4)分离常数法:对于分式的分子、分母中都含有变量的求值域,变成只有分子或分母有变量的情况,再利用函数的观点求最值.(5)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-246397.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
2022春六年级语文下册 第二单元综合测试卷习题课件 新人教版.ppt
