新教材2021-2022学年苏教版数学选择性必修第一册课后练习:3-2-2 双曲线的几何性质 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新教材2021-2022学年苏教版数学选择性必修第一册课后练习:3-2-2双曲线的几何性质 WORD版含解析 新教材 2
- 资源描述:
-
1、课后素养落实(十七)双曲线的几何性质(建议用时:40分钟)一、选择题1若实数k满足0k5,则曲线1与曲线1的()A实半轴长相等 B虚半轴相等C离心率相等 D焦距相等 D由于16(5k)(16k)5,所以焦距相等2若a1,则双曲线y21的离心率的取值范围是()A(,) B(,2)C(1,) D(1,2)C由题意得双曲线的离心率e即e21a1,01,112,1e故选C3已知双曲线C:1(a0,b0)的焦距为10,点P(2,1)在C的渐近线上,则双曲线C的方程为()A1 B1C1 D1A双曲线C的渐近线方程为0,又点P(2,1)在C的渐近线上,所以0,即a24b2,又a2b2c225,由,得b25,
2、a220,所以双曲线C的方程为1,故选A4过双曲线1的右焦点F2作垂直于实轴的弦PQ,F1是左焦点,若PF1Q90,则双曲线的离心率是()A B1C2 D3B因为|PF2|F2F1|, P点满足1,y,2c,即2acb2c2a2,2e,又e0,故e15已知双曲线C:y21,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N若OMN为直角三角形,则|MN|()A B3 C2 D4B根据题意,可知其渐近线的斜率为,且右焦点为F(2,0),从而得到FON30,所以直线MN的倾斜角为60或120,根据双曲线的对称性,设其倾斜角为60,可以得出直线MN的方程为y(x2),分别与两
3、条渐近线yx和yx联立,求得M(3,) ,N,所以|MN|3二、填空题6若双曲线x21的离心率为,则实数m_,渐近线方程是_2yxa21,b2m,e21m3,m2渐近线方程是yxx7以yx为渐近线且经过点(2,0)的双曲线方程为_1以yx为渐近线的双曲线为等轴双曲线,方程可设为x2y2(0),代入点(2,0)得4,x2y24,即18已知双曲线过点(4,),且渐近线方程为yx,则该双曲线的标准方程为_y21法一:双曲线的渐近线方程为yx,可设双曲线的方程为x24y2(0)双曲线过点(4,),164()24,双曲线的标准方程为y21法二:渐近线yx过点(4,2),而2,点(4,)在渐近线yx的下方
4、,在yx的上方(如图)双曲线的焦点在x轴上,故可设双曲线方程为1(a0,b0)由已知条件可得解得双曲线的标准方程为y21三、解答题9求满足下列条件的双曲线的标准方程:(1)一个焦点为(0,13),且离心率为;(2)渐近线方程为yx,且经过点A(2,3)解(1)由题意知双曲线的焦点在y轴上,且c13,因为,所以a5,b12故所求双曲线的标准方程为1(2)法一:因为双曲线的渐近线方程为yx,若焦点在x轴上,设所求双曲线的标准方程为1(a0,b0),则因为点A(2,3)在双曲线上,所以1联立,无解若焦点在y轴上,设所求双曲线的标准方程为1(a0,b0),则A(2,3)在双曲线上,1由联立,解得a28
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-252922.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
标题-2018-2019学年高中新三维一轮复习语文通用版:专题十二 第三编悦读板块一 主题词(七) 告 别.ppt
