开化中学2006年上学期高二优化训练数学:第八章圆锥曲线方程一A卷(附答案).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 开化 中学 2006 上学 期高二 优化 训练 数学 第八 圆锥曲线 方程 答案
- 资源描述:
-
1、第八章 圆锥曲线方程(一)椭圆与双曲线知识网络范题精讲【例1】 已知椭圆的两焦点为F1(0,1)、F2(0,1),直线y=4是椭圆的一条准线.(1)求椭圆方程;(2)设点P在椭圆上,且|PF1|PF2|=1,求tanF1PF2的值.解析:本题考查椭圆的基本性质及解题的综合能力.(1)设椭圆方程为+=1(ab0).由题设知c=1,=4,a2=4,b2=a2c2=3.所求椭圆方程为+=1.(2)由(1)知a2=4,a=2.由椭圆定义知|PF1|+|PF2|=4,又|PF1|PF2|=1,|PF1|=,|PF2|=.又|F1F2|=2c=2,由余弦定理cosF1PF2=.tanF1PF2=.【例2】
2、 已知双曲线x2=1,过点A(2,1)的直线l与已知双曲线交于P1、P2两点.(1)求线段P1P2的中点P的轨迹方程;(2)过点B(1,1)能否作直线l,使l与已知双曲线交于两点Q1、Q2,且B是线段Q1Q2的中点?请说明理由.(1)解法一:设点P1、P2的坐标分别为(x1,y1)、(x2,y2),中点P的坐标为(x,y),则有x12=1,x22=1,两式相减,得2(x1+x2)(x1x2)=(y1+y2)(y1y2).当x1x2,y0时,由x1+x2=2x,y1+y2=2y,得=.又由P1、P2、P、A四点共线,得=.由得=,即2x2y24x+y=0.当x1=x2时,x=2,y=0满足此方程
3、,故中点P的轨迹方程是2x2y24x+y=0.解法二:设点P1、P2、中点P的坐标分别为(x1,y1)、(x2,y2)、(x,y),直线l的方程为y=k(x2)+1,将l方程代入双曲线x2=1中,得(2k2)x2+2k(2k1)x+2k23=0,则x1+x2=,x1x2=,y1+y2=k(x1+x2)+24k=. 于是 当y0时,由得k=.将其代入,整理得2x2y24x+y=0.当l倾斜角为90时,P点坐标为(2,0)仍满足此方程,故中点P的轨迹方程为2x2y24x+y=0.(2)解:假设满足题设条件的直线l存在,Q1、Q2的坐标分别为(x3,y3)、(x4,y4),同(1)得2(x3+x4)
4、(x3x4)=(y3+y4)(y3y4).x3+x4=2,y3+y4=2,=2(x3x4),即l的斜率为2.l的直线方程为y1=2(x1),即y=2x1.方程组无解,与假设矛盾,满足条件的直线l不存在.【例3】 如下图,已知OFQ的面积为S,且=1,(1)若S的范围为S2,求向量与的夹角的取值范围;(2)设|=c(c2),S=c,若以O为中心,F为焦点的椭圆经过点Q,当|取得最小值时,求此椭圆的方程.分析:本题考查向量的基本知识、三角知识及最值问题在解析几何中的综合运用.解:(1)=1,|cos=1.又|sin(180)=S,tan=2S,S=.又S2,2,即1tan4,0B.0R2C.0R4
5、D.2R4解析:将方程变为+=1,由已知可得,0R0,mb0)的离心率互为倒数,那么以a、b、m为边的三角形是A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析:双曲线=1的离心率e1=,椭圆的离心率e2=.e1与e2互为倒数,e1e2=1,即=1,整理得a2+b2=m2.以a、b、m为边的三角形是直角三角形.答案:B8.方程=|x+y2|表示的曲线是A.椭圆B.双曲线C.抛物线D.不能确定解析:数形结合法.动点P(x,y)到定点(1,1)和定直线x+y2=0距离之比为.答案:B9.若椭圆+=1(mn0)和双曲线=1(ab0)有相同的焦点F1、F2,P是两条曲线的一个交点,则|PF1
6、|PF2|的值是A.maB.(ma)C.m2a2D.解析:|PF1|+|PF2|=2,|PF1|PF2|=2,|PF1|=+ ,|PF2|=.|PF1|PF2|=ma.答案:A10.已知F1、F2为椭圆+=1(ab0)的焦点,M为椭圆上一点,MF1垂直于x轴,且F1MF2=60,则椭圆的离心率为A.B.C.D.分析:本题考查如何求椭圆的离心率.解:MF1x轴,M点的横坐标为xM=c.把xM代入椭圆方程+=1中,得yM=,如下图所示.在RtMF1F2中,tanF1MF2=,即2ac=b2.a22acc2=0.每一项都除以a2,得2ee2=0,解得e1=或e2= (舍).答案:C第卷(非选择题 共
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-253331.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
