2023届新高考数学 热点专练08 立体几何(学生版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届新高考数学 热点专练08 立体几何学生版 2023 新高 数学 热点 08 立体几何 学生
- 资源描述:
-
1、热点08 立体几何从新高考的考查情况来看,立体几何是高考必考内容,考查重点是:几何体的表面积和体积,与球有关的切、接问题,一般以选择题和填空题的形式出现,难度中等;异面直线所成的角和线面位置关系;直线与平面以及平面与平面平行(垂直)的判定和性质,常出现在解答题的第(1)问中,难度中等;利用向量法求空间角和空间距离是高考的重点,考查频率较高,线、面的平行和垂直问题一般不用向量法求解,但向量法的使用有时可以加快求解速度,主要以解答题的形式出现,难度中等该部分主要考查考生对转化与化归思想的应用,提升直观想象、数学运算、逻辑推理核心素养1、几何体的表面积(体积)问题的常见类型及解题策略:(1)若所给定
2、的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解(2)若所给定的几何体的体积不能直接利用公式得出,则常用等体积法、割补法等方法进行求解等体积法:一个几何体无论怎样转化,其体积总是不变的如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解等体积法也称等积转化或等积变形,它是通过选择合适的底面来求几何体体积的一种方法,多用来解决有关锥体的体积,特别是三棱锥的体积.割补法:运用割补法处理不规则的空间几何体或不易求解的空间几何体的体积计算问题,关键是能根据几何体中的线面关系合理选择截面进行切割或者补成规则的几何体.要弄清切割后或补形后的几何体的体积是否与原几何体的
3、体积之间有明显的确定关系,如果是由几个规则的几何体堆积而成的,其体积就等于这几个规则的几何体的体积之和;如果是由一个规则的几何体挖去几个规则的几何体而形成的,其体积就等于这个规则的几何体的体积减去被挖去的几个几何体的体积2、球面几何的解题技巧:1)确定一个球的条件是球心和球的半径,已知球的半径可以利用公式求球的表面积和体积;反之,已知球的体积或表面积也可以求其半径.2)球与几种特殊几何体的关系:(1)长方体内接于球,则球的直径是长方体的体对角线长;(2)正四面体的外接球与内切球的球心重合,且半径之比为31;(3)直棱柱的外接球:找出直棱柱的外接圆柱,圆柱的外接球就是所求直棱柱的外接球.特别地,
4、直三棱柱的外接球的球心是上、下底面三角形外心连线的中点;(4)球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径;(5)球与圆台的底面和侧面均相切,则球的直径等于圆台的高3)与球有关的实际应用题一般涉及水的容积问题,解题的关键是明确球的体积与水的容积之间的关系,正确建立等量关系.4)有关球的截面问题,常画出过球心的截面圆,将空间几何问题转化为平面中圆的有关问题解决.球心到截面的距离与球的半径及截面圆的半径之间满足关系式:.3、向量法求空间角度和距离的方法策略:建立空间直角坐标系,把空间中的点用有序实数组(即坐标)表示出来,通过坐标的代数运算解决空间几何问题,实现了几何问
5、题(形)与代数问题(数)的结合.1)用向量法求异面直线所成的角:(1)建立空间直角坐标系;(2)求出两条直线的方向向量;(3)代入公式求解.2)向量法求直线与平面所成的角:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角3)向量法求二面角:求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角4)求点P到平面的距离的三个步骤:(1)在平面内取一点
6、A,确定向量的坐标(2)确定平面的法向量n.(3)代入公式求解.热点1、球面几何主要考查多面体的外接球的表面积、体积等,一般应用“老方法”,求出球的半径即可。热点2、直线与平面以及平面与平面平行(垂直)的判定和性质(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。热点3、空间向量的应用(求角、距离等)主要步骤:一作、二证、三算;若用向量,那就是一证、二算。(1)两条异面直线所成的角:平移法;补形法;向量法。(2)直线和平面所成的角:作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量
7、计算。用公式计算。(3)二面角:平面角的作法:(i)定义法;(ii)垂面法。平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式。(4)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“等体积法”直接求距离。A卷(建议用时90分钟)一、单选题1(2021山东泰安一中模拟预测)如图,位于贵州黔南的“中国天眼”是具有我国自主知识产权世界最大单口径最灵敏的球面射电望远镜,其反射面的形状为球冠,球冠是球面被平面所截后剩下的曲面,截得的圆为球冠的底,与截面垂直的
8、球体直径被截得的部分为球冠的高,设球冠所在球的半径为,球冠底的半径为,球冠的高为,球冠底面圆的周长为.已知球冠的表面积公式为,若,则球冠所在球的表面积为( )ABCD2(2021重庆市涪陵实验中学校高三期中)北京大兴国际机场的显著特点之一是各种弯曲空间的运用.刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和,例如:正四面体在每个顶点有3个面角,每个面角是,所以正四面体在各顶点的曲率为,故其总曲率为,则四棱锥
9、的总曲率为( )ABCD3(2021山东潍坊高三期中)“迪拜世博会”于2021年10月1日至2022年3月31日在迪拜举行,中国馆建筑名为“华夏之光”,外观取型中国传统灯笼,寓意希望和光明它的形状可视为内外两个同轴圆柱,某爱好者制作了一个中国馆的实心模型,已知模型内层底面直径为,外层底面直径为,且内外层圆柱的底面圆周都在一个直径为的球面上.此模型的体积为( )ABCD4(2021广东龙岗高三期中)如图,在中,为的中点,将沿折起到的位置,使得二面角为,则三棱锥的体积为( )AB4CD25(2021山东胶州市教育体育局教学研究室高三期中)已知,是空间中两条不同的直线,是空间中两个不同的平面,下列说
10、法正确的是( )A若,则B若,则C若,则D若,则6(2021江苏南通高三期中)已知圆锥SO的顶点为S,母线SA,SB,SC两两垂直,且,则圆锥SO的体积为( )ABCD7(2021浙江高三期中)一个四棱锥的三视图如图所示,则该四棱锥各棱棱长的最大值为( )A1B2CD8(2022浙江模拟预测)已知某正四棱锥的体积是,该几何体的表面积最小值是,我们在绘画该表面积最小的几何体的直观图时所画的底面积大小是,则和的值分别是( )A3;B4;C4;D3;9(2021浙江模拟预测)我国古代数学名著九章算术中记载的“刍甍”(chumeng)是底面为矩形,顶部只有一条棱的五面体.如下图五面体是一个刍甍,其中四
11、边形为矩形,平面,且(AD的长度为常数),是等边三角形,当五面体体积最大时,记二面角的大小为,二面角的大小为,直线与所成的角为,则( )A B C D10(2021浙江高三期中)在正方体中P,Q分别是和的中点,则下列判断错误的是( )A B平面 C D平面11(2021上海曹杨二中高三期中)已知正方体的棱长为,、分别是棱、的中点,点为底面内(包括边界)的一动点,若直线与平面无公共点,则点的轨迹长度为( )ABCD12(2021新疆昌吉市第九中学高三期末)已知梯形CEPD如下图所示,其中,A为线段PD的中点,四边形ABCD为正方形,现沿AB进行折叠,使得平面平面ABCD,得到如图所示的几何体已知
12、当点F满足时,平面平面PCE,则的值为( )ABCD二、多选题13(2021福建永安市第三中学高中校高三期中)在正方体中,为底面的中心,为线段上的动点(不包括两个端点),为线段的中点现有以下结论中正确的是( )A与是异面直线;B过、三点的正方体的截面是等腰梯形;C平面平面;D平面14(2021江苏南京师大附中高三期中)如图,正方体的棱长为1,E,F分别是棱的中点,过点E,F的平面分别与棱交于点G,H,以下四个结论正确的是( )A正方体外接球的表面积为3 B平面EGFH与平面ABCD所成角的最大值为C四棱锥的体积为定值 D点到平面EGFH的距离的最大值为15(2022全国高三专题练习)如图,已知
13、圆锥的底面半径,侧面积为,内切球的球心为,外接球的球心为,则下列说法正确的是( )A外接球的表面积为 B设内切球的半径为,外接球的半径为,则C过点P作平面截圆锥的截面面积的最大值为 D设长方体为圆锥的内接长方体,且该长方体的一个面与圆锥底面重合,则该长方体体积的最大值为三、填空题16(2021福建上杭一中模拟预测)我国南北朝时期的数学家祖暅提出了计算体积的祖暅原理:“幂势既同,则积不容异。”意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等。如图,阴影部分是由双曲线与它的渐近线以及直线所围成的图形,将此图形绕轴旋转一周,得到一个旋转体,(1)如用与轴相距为,且
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
2018年秋人教版八年级语文上册(河北专版)习题讲评课件:第四单元检测卷(共33张PPT).ppt
