分享
分享赚钱 收藏 举报 版权申诉 / 15

类型2022年新高考数学 小题狂练(6)(含解析).doc

  • 上传人:a****
  • 文档编号:256364
  • 上传时间:2025-11-22
  • 格式:DOC
  • 页数:15
  • 大小:451.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年新高考数学 小题狂练6含解析 2022 新高 数学 小题狂练 解析
    资源描述:

    1、小题狂练(6)一、选择题:(本大题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设复数,则复数z在复平面内对应的点的坐标为( )A. B. C. D. 【答案】D【解析】【分析】由复数的乘法化简得到,然后利用复数的几何意义求解.【详解】因为,使用复数z在复平面内对应的点的坐标为.故选:D【点睛】本题主要考查复数的运算以及复数的几何意义,还考查了运算求解的能力,属于基础题.2. 已知集合,则( )A. B. C. D. 【答案】D【解析】【分析】化简集合,再根据交集的概念进行运算可得.【详解】因为函数的值域为所以,又集合,所以.故选:D【点睛】本题考查了

    2、交集的运算,函数的值域,解一元二次不等式,属于基础题.3. “直线与平面内的无数条直线垂直”是“直线与平面垂直”的()A. 充分条件B. 必要条件C. 充要条件D. 既非充分条件又非必要条件【答案】B【解析】【分析】利用平面几何知识可得一个平面内的一条直线可以垂直此平面内的无数条直线,可得不是充分条件;利用直线与平面垂直的定义可得应该是必要条件。【详解】因为直线在平面内,也可以与平面内的无数条直线垂直,所以,“直线与平面内的无数条直线垂直”不是“直线与平面垂直”的充分条件;若直线与平面垂直,则直线与平面内的所有直线都垂直。所以,“直线与平面内的无数条直线垂直”是“直线与平面垂直”的必要条件。【

    3、点睛】本题考查直线与平面垂直关系的判断,考查学生的空间想象能力,判断位置关系时,应寻找合适的模型即可;判断不对时,只需找到反例就行。4. 函数在上的图象大致是( )A. B. C. D. 【答案】A【解析】【分析】由函数的奇偶性及特殊点的函数值,运用排除法得解【详解】解:所以,是偶函数,函数图象关于轴对称,故排除B,D,排除C故选:A【点睛】本题考查利用函数的性质确定函数图象,考查数形结合思想,属于基础题5. 在直角梯形中,是的中点,则( )A. B. C. D. 【答案】D【解析】【分析】由数量积的几何意义可得,又由数量积的运算律可得,代入可得结果.【详解】,由数量积的几何意义可得:的值为与

    4、在方向投影的乘积,又在方向的投影为=2,同理,故选D.【点睛】本题考查了向量数量积的运算律及数量积的几何意义的应用,属于中档题.6. 宁波古圣王阳明的传习录专门讲过易经八卦图,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“”表示一根阳线,“”表示一根阴线)从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为( )A. B. C. D. 【答案】B【解析】【分析】根据古典概型的概率求法,先得到从八卦中任取两卦基本事件的总数,再找出这两卦的六根线中恰有四根阴线的基本事件数,代入公式求解.【详解】从八卦中任取两卦基本事件的总数种,这两卦六根线中恰有四根阴线的基本事

    5、件数有6种,分别是(巽,坤),(兑,坤),(离,坤),(震,艮),(震,坎),(坎,艮),所以这两卦的六根线中恰有四根阴线的概率是.故选:B【点睛】本题主要考查古典概型的概率,还考查了运算求解的能力,属于基础题.7. 已知抛物线的焦点为,点在上,.若直线与交于另一点,则的值是( )A. B. C. D. 【答案】C【解析】【分析】本道题结合抛物线性质,分别计算A,B的坐标,结合两点距离公式,即可【详解】结合抛物线的性质可得,所以抛物线方程为,所以点A坐标为,所以直线AB的方程为,代入抛物线方程,计算B的坐标为,所以,故选C【点睛】本道题考查了抛物线性质以及两点距离公式,难度中等8. 三棱锥的所

    6、有顶点都在半径为2的球的球面上.若是等边三角形,平面平面,则三棱锥体积的最大值为( )A. 2B. 3C. D. 【答案】B【解析】【分析】由题意求得,则且, 又由平面平面,可得平面,即三棱锥的高,在中,利用基本不等式求得面积的最大值,进而可得三棱锥体积的最大值,得到答案.【详解】由题意知,三棱锥的所有顶点都在半径为2的球的球面上,若是等边三角形,如图所示,可得,则且, 又由平面平面,所以平面,即三棱锥的高,又由在中,设,则,所以,当且仅当时取等号,即的最大值为3,所以三棱锥体积的最大值为,故选B.【点睛】本题主要考查了有关球的内接组合体的性质,以及三棱锥的体积的计算问题,其中解答中充分认识组

    7、合体的结构特征,合理计算三棱锥的高和底面面积的最大值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.二多项选择题9.下列“若,则”形式的命题中,是的必要条件的是( )A. 若两直线的斜率相等,则两直线平行B. 若,则C. 若,则D. 若,则【答案】BCD【解析】【分析】根据必要条件的定义即可判断.【详解】A中是的充分条件,B,C,D中是的必要条件.故选BCD.故选: BCD【点睛】本题主要考查必要条件,属于基础题.10.将函数的图象向左平移个单位长度,得到函数的图象,则下列关于函数的说法正确的是( )A. 是偶函数B. 的最小正周期是C. 的图象关于直线对称D. 的图象关于点对

    8、称【答案】AD【解析】【分析】利用三角函数图象变换可得函数的解析式,然后利用余弦型函数的基本性质逐项判断可得出正确选项.【详解】由题意可得,函数是偶函数,A正确:函数最小周期是,B错误;,则直线不是函数图象的对称轴,C错误;,则是函数图象的一个对称中心,D正确.故选:AD.【点睛】本题考查利用三角函数图象变换求函数解析式,同时也考查了余弦型函数基本性质的判断,考查推理能力与计算能力,属于中等题.11.已知函数的零点为,函数的零点为,则下列不等式中成立的是( )A. B. C. D. 【答案】CD【解析】分析】根据函数与互为反函数,在同一坐标系中分别作出函数,的图象,利用反函数的性质以及基本不等

    9、式可判断A、B、D;利用导数判断在上单调递增, 从而可得,再由点在直线上,可得,即可得出选项.【详解】由,得, 函数与互为反函数,在同一坐标系中分别作出函数,的图象,如图所示,则, 由反函数性质知关于(1,1)对称,则,AB错误,D正确.,在上单调递增,且,.又点在直线上,即,故C正确.故选:CD【点睛】本题考查了反函数的性质、基本不等式,考查了数形结合的思想,属于中档题.12.如图,在矩形中,为边的中点,将沿直线翻转成(平面).若分别为线段的中点,则在翻转过程中,下列说法正确的是( )A. 与平面垂直的直线必与直线垂直B. 异面直线与所成的角是定值C. 一定存在某个位置,使D. 三棱锥外接球

    10、半径与棱的长之比为定值【答案】ABD【解析】【分析】对A,由面面平行可知正确;对B,取的中点为,作出异面直线所成的角,并证明为定值;对C,利用反证法证明,与已知矛盾;对D,确定为三棱锥的外接球球心,即可得证;【详解】取中点,连接.为的中点,.又为的中点,且,四边形为平行四边形,.,平面平面平面,与平面垂直的直线必与直线垂直,故A正确.取的中点为,连接,则且,四边形是平行四边形,为异面直线与所成的角.设,则,故异面直线与所成的角为定值,故B正确.连接.为等腰直角三角形且为斜边中点,.若,则平面.又,.又平面,与已知矛盾,故C错误.为三棱锥的外接球球心.又为定值,故D正确.故选:ABD.【点睛】本

    11、题考查空间几何体的翻折问题、异面直线所成角、外接球等问题,考查转化与化归思想,考查空间想象能力、运算求解能力,求解时注意翻折前后的不变量.三填空题13.已知,且,则实数_【答案】【解析】由题意,由,得,解得.【点睛】设向量, 向量平行的两种方法:(1)的充要条件是;(2)不妨设,的充要条件是存在实数,使,即.第一种方法纯粹地是代数方程,第二种方法是几何方法,对不是坐标表示的向量平行非常适用.14.的展开式中的系数为_.【答案】-6480【解析】分析】,利用二项式定理得到,再展开,计算得到答案.【详解】,展开式的通项为:,取,则,的展开式的通项为:,取,得到,故的系数为.故答案为:.【点睛】本题

    12、考查了二项式定理的应用,意在考查学生的计算能力和应用能力.15.已知正实数满足,则的最小值是_,此时_.【答案】 (1). 9 (2). 【解析】【分析】将用表示,得,代入,再化为积为定值的形式,利用基本不等式可得答案.【详解】由可得,由,得,所以,因为,所以,当且仅当时等号成立.故答案为:9;.【点睛】本题考查了利用基本不等式求最值,属于基础题.16.已知抛物线与直线在第一、四象限分别交于A,B两点,F是抛物线的焦点,若,则_.【答案】4【解析】【分析】首先判断直线过抛物线的焦点,方程联立求点的坐标,并得到,的值,求.【详解】直线当时,直线过抛物线的焦点,三点共线,联立直线与抛物线方程, ,得,解得: ,.故答案为:4【点睛】本题考查直线与抛物线的简单综合问题,焦半径公式,意在考查计算能力,属于基础题型.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年新高考数学 小题狂练(6)(含解析).doc
    链接地址:https://www.ketangku.com/wenku/file-256364.html
    相关资源 更多
  • 河南省鹤壁市淇滨高级中学2017_2018学年高二数学下学期第三次周考试题理2018060702118.doc河南省鹤壁市淇滨高级中学2017_2018学年高二数学下学期第三次周考试题理2018060702118.doc
  • 人教版数学五年级(下册)期末综合素养提升题附参考答案【轻巧夺冠】.docx人教版数学五年级(下册)期末综合素养提升题附参考答案【轻巧夺冠】.docx
  • 江苏省无锡市南菁高级中学2023-2024学年高一数学上学期新生开学检测试题(Word版附解析).docx江苏省无锡市南菁高级中学2023-2024学年高一数学上学期新生开学检测试题(Word版附解析).docx
  • 江苏省张家港市崇真中学2017届高三数学一轮复习导学案:8 函数的奇偶性与对称性 .doc江苏省张家港市崇真中学2017届高三数学一轮复习导学案:8 函数的奇偶性与对称性 .doc
  • 河南省鹤壁市淇滨高级中学2017_2018学年高二数学下学期第三次周考试题文2018060702119.doc河南省鹤壁市淇滨高级中学2017_2018学年高二数学下学期第三次周考试题文2018060702119.doc
  • 人教版数学五年级(下册)期末综合素养提升题附参考答案【能力提升】.docx人教版数学五年级(下册)期末综合素养提升题附参考答案【能力提升】.docx
  • 江苏省张家港市崇真中学2017届高三数学一轮复习导学案:76 复数的概念与运算及其几何意义 .doc江苏省张家港市崇真中学2017届高三数学一轮复习导学案:76 复数的概念与运算及其几何意义 .doc
  • 人教版数学五年级(下册)期末综合素养提升题附参考答案【考试直接用】.docx人教版数学五年级(下册)期末综合素养提升题附参考答案【考试直接用】.docx
  • 江苏省张家港市崇真中学2017届高三数学一轮复习导学案:71 平面与平面的位置关系1 .doc江苏省张家港市崇真中学2017届高三数学一轮复习导学案:71 平面与平面的位置关系1 .doc
  • 人教版数学五年级(下册)期末综合素养提升题附参考答案【综合卷】.docx人教版数学五年级(下册)期末综合素养提升题附参考答案【综合卷】.docx
  • 人教版数学五年级(下册)期末综合素养提升题附参考答案【精练】.docx人教版数学五年级(下册)期末综合素养提升题附参考答案【精练】.docx
  • 江苏省张家港市崇真中学2017届高三数学一轮复习导学案:64 直线与圆锥曲线(一) .doc江苏省张家港市崇真中学2017届高三数学一轮复习导学案:64 直线与圆锥曲线(一) .doc
  • 人教版数学五年级(下册)期末综合素养提升题附参考答案【突破训练】.docx人教版数学五年级(下册)期末综合素养提升题附参考答案【突破训练】.docx
  • 江苏省张家港市崇真中学2017届高三数学一轮复习导学案:62 双曲线 .doc江苏省张家港市崇真中学2017届高三数学一轮复习导学案:62 双曲线 .doc
  • 人教版数学五年级(下册)期末综合素养提升题附参考答案【研优卷】.docx人教版数学五年级(下册)期末综合素养提升题附参考答案【研优卷】.docx
  • 江苏省张家港市崇真中学2017届高三数学一轮复习导学案:59 直线与圆综合二 .doc江苏省张家港市崇真中学2017届高三数学一轮复习导学案:59 直线与圆综合二 .doc
  • 人教版数学五年级(下册)期末综合素养提升题附参考答案【满分必刷】.docx人教版数学五年级(下册)期末综合素养提升题附参考答案【满分必刷】.docx
  • 江苏省张家港市崇真中学2017届高三数学一轮复习导学案:58 直线与圆综合一 .doc江苏省张家港市崇真中学2017届高三数学一轮复习导学案:58 直线与圆综合一 .doc
  • 人教版数学五年级(下册)期末综合素养提升题附参考答案【模拟题】.docx人教版数学五年级(下册)期末综合素养提升题附参考答案【模拟题】.docx
  • 江苏省张家港市崇真中学2017届高三数学一轮复习导学案:55 圆的方程 .doc江苏省张家港市崇真中学2017届高三数学一轮复习导学案:55 圆的方程 .doc
  • 人教版数学五年级(下册)期末综合素养提升题附参考答案【巩固】.docx人教版数学五年级(下册)期末综合素养提升题附参考答案【巩固】.docx
  • 江苏省张家港市崇真中学2017届高三数学一轮复习导学案:52 三角函数 .doc江苏省张家港市崇真中学2017届高三数学一轮复习导学案:52 三角函数 .doc
  • 人教版数学五年级(下册)期末综合素养提升题附参考答案【实用】.docx人教版数学五年级(下册)期末综合素养提升题附参考答案【实用】.docx
  • 人教版数学五年级(下册)期末综合素养提升题附参考答案【完整版】.docx人教版数学五年级(下册)期末综合素养提升题附参考答案【完整版】.docx
  • 人教版数学五年级(下册)期末综合素养提升题附参考答案【夺分金卷】.docx人教版数学五年级(下册)期末综合素养提升题附参考答案【夺分金卷】.docx
  • 江苏省张家港市崇真中学2017届高三数学一轮复习导学案:48 三角函数的化简、求值与证明(二) .doc江苏省张家港市崇真中学2017届高三数学一轮复习导学案:48 三角函数的化简、求值与证明(二) .doc
  • 人教版数学五年级(下册)期末综合素养提升题附参考答案【基础题】.docx人教版数学五年级(下册)期末综合素养提升题附参考答案【基础题】.docx
  • 江苏省张家港市崇真中学2017届高三数学一轮复习导学案:47 三角函数式的化简 .doc江苏省张家港市崇真中学2017届高三数学一轮复习导学案:47 三角函数式的化简 .doc
  • 人教版数学五年级(下册)期末综合素养提升题附参考答案【培优】.docx人教版数学五年级(下册)期末综合素养提升题附参考答案【培优】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1