2022年高考真题--数学(天津卷)(Word版附解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年高 考真题 数学 天津 Word 解析
- 资源描述:
-
1、2022年普通高等学校招生全国统一考试数学(天津卷)202206一、选择题:本题共9小题,每小题5分,共45分在每小题给出的四个选项中,只有一项是符合题目要求的1. 设全集,集合,则()A. B. C. D. 【答案】A【解析】【分析】先求出,再根据交集的定义可求.【详解】,故,故选:A.2. “为整数”是“为整数”的()A. 充分不必要B. 必要不充分C. 充分必要D. 既不允分也不必要【答案】A【解析】【分析】依据充分不必要条件的定义去判定“为整数”与“为整数”的逻辑关系即可.【详解】由题意,若为整数,则为整数,故充分性成立;当时,为整数,但不为整数,故必要性不成立;所以“为整数”是“为整
2、数”的充分不必要条件.故选:A.3. 函数的图像为()A. B. C. D. 【答案】D【解析】【分析】分析函数的定义域、奇偶性、单调性及其在上的函数值符号,结合排除法可得出合适的选项.【详解】函数的定义域为,且,函数为奇函数,A选项错误;又当时,C选项错误;当时,函数单调递增,故B选项错误;故选:D4. 为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:)的分组区间为,将其按从左到右的顺序分别编号为第一组,第二组,第五组,右图是根据试验数据制成的频率分布直方图已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A. 8B. 12C
3、. 16D. 18【答案】B【解析】【分析】结合已知条件和频率分布直方图求出志愿者的总人数,进而求出第三组的总人数,从而可以求得结果.【详解】志愿者的总人数为50,所以第三组人数为500.3618,有疗效的人数为18612故选:B.5. 已知,则()A. B. C. D. 【答案】C【解析】【分析】利用幂函数、对数函数的单调性结合中间值法可得出、的大小关系.【详解】因为,故.故答案为:C.6. 化简的值为( )A. 1B. 2C. 4D. 6【答案】B【解析】【分析】根据对数的性质可求代数式的值.【详解】原式,故选:B7. 已知抛物线分别是双曲线的左、右焦点,抛物线的准线过双曲线的左焦点,与双
4、曲线的渐近线交于点A,若,则双曲线的标准方程为()A. B. C. D. 【答案】C【解析】【分析】由已知可得出的值,求出点的坐标,分析可得,由此可得出关于、的方程组,解出这三个量的值,即可得出双曲线的标准方程.【详解】抛物线的准线方程为,则,则、,不妨设点为第二象限内的点,联立,可得,即点,因为且,则为等腰直角三角形,且,即,可得,所以,解得,因此,双曲线的标准方程为.故选:C.8. 如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为,腰为3的等腰三角形,则该几何体的体积为()A. 23B. 24C. 26D. 27【答案】D【解析】【分析】作出几何
5、体直观图,由题意结合几何体体积公式即可得组合体的体积.【详解】该几何体由直三棱柱及直三棱柱组成,作于M,如图,因为,所以,因为重叠后的底面为正方形,所以,在直棱柱中,平面BHC,则,由可得平面,设重叠后的EG与交点为则则该几何体的体积为.故选:D.9. 已知,关于该函数有下列四个说法:的最小正周期为;在上单调递增;当时,的取值范围为;的图象可由的图象向左平移个单位长度得到以上四个说法中,正确的个数为()A. B. C. D. 【答案】A【解析】【分析】根据三角函数的图象与性质,以及变换法则即可判断各说法的真假【详解】因为,所以最小正周期为,不正确;令,而在上递增,所以在上单调递增,正确;因为,
6、所以,不正确;由于,所以的图象可由的图象向右平移个单位长度得到,不正确故选:A第II卷二、填空题:本大题共6小题,每小题5分,共30分试题中包含两个空的,答对1个的给3分,全部答对的给5分10. 已知是虚数单位,化简的结果为_【答案】#【解析】【分析】根据复数代数形式的运算法则即可解出【详解】故答案为:11. 的展开式中的常数项为_.【答案】【解析】【分析】由题意结合二项式定理可得的展开式的通项为,令,代入即可得解.【详解】由题意的展开式的通项为,令即,则,所以展开式中的常数项为.故答案为:.【点睛】本题考查了二项式定理的应用,考查了运算求解能力,属于基础题.12. 若直线与圆相交所得的弦长为
7、,则_【答案】【解析】【分析】计算出圆心到直线的距离,利用勾股定理可得出关于的等式,即可解得的值.【详解】圆的圆心坐标为,半径为,圆心到直线距离为,由勾股定理可得,因为,解得.故答案为:.13. 52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A的概率为_;已知第一次抽到的是A,则第二次抽取A的概率为_【答案】 . . 【解析】【分析】由题意结合概率的乘法公式可得两次都抽到A的概率,再由条件概率的公式即可求得在第一次抽到A的条件下,第二次抽到A的概率.【详解】由题意,设第一次抽到A的事件为B,第二次抽到A的事件为C,则.故答案为:;.14. 在中,D是AC中点,试用表示为_,若,则的最
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
