分享
分享赚钱 收藏 举报 版权申诉 / 22

类型2023届高考数学一轮复习 单元双优测评卷——第六单元 平面向量及其应用A卷(含解析).docx

  • 上传人:a****
  • 文档编号:260756
  • 上传时间:2025-11-22
  • 格式:DOCX
  • 页数:22
  • 大小:693.23KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2023届高考数学一轮复习 单元双优测评卷第六单元 平面向量及其应用A卷含解析 2023 高考 数学 一轮 复习 单元 测评 第六 平面 向量 及其 应用 解析
    资源描述:

    1、第六单元 平面向量及其应用A卷 基础过关必刷卷一、选择题:本题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的1,是半径为1的圆的两条直径,则( )ABCD2在中,则此三角形( )A无解B一解C两解D解的个数不确定3设为单位向量,满足,设的夹角为,则的可能取值为( )ABCD4已知在锐角三角形中,角,所对的边分别为,若,则的取值范围是( )ABCD5在中,角所对的边分别为,已知,则( )AB或CD或6如图,中,角的平分线交边于点,则( )ABCD7圣索菲亚教堂(英语:SAINT SOPHIA CATHEDRAL)坐落于中国黑龙江省,是一座始建于1907年拜占庭风

    2、格的东正教教堂,距今已有114年的历史,为哈尔滨的标志性建筑1996年经国务院批准,被列为第四批全国重点文物保护单位,是每一位到哈尔滨旅游的游客拍照打卡的必到景点其中央主体建筑集球,圆柱,棱柱于一体,极具对称之美,可以让游客从任何角度都能领略它的美小明同学为了估算索菲亚教堂的高度,在索菲亚教堂的正东方向找到一座建筑物,高为,在它们之间的地面上的点(三点共线)处测得楼顶,教堂顶的仰角分别是和,在楼顶处测得塔顶的仰角为,则小明估算索菲亚教堂的高度为( )ABCD8在中,角所对的边分别为,且点满足,若,则的最大值为( )ABCD二、选择题:本题共4小题,每小题5分,共20分在每小题给出的选项中,有多

    3、项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分9在中,角的对边分别为,若,则角可为( )ABCD10如图所示,在中,点D在边BC上,且,点E在边AD上,且,则( )ABCD11如果是平面内两个不共线的向量,那么下列说法中不正确的是( )A+ (,R)可以表示平面内的所有向量B对于平面内任一向量,使=+的实数对(,)有无穷多个C若向量1+1与2+2共线,则有且只有一个实数,使得1+1=(2+2)D若实数,使得,则=012已知是边长为2的等边三角形,分别是、上的两点,且,与交于点,则下列说法正确的是( )ABCD在方向上的投影为三、填空题:本题共4小题,每小题5分,共20分13已

    4、知向量,那么向量与的夹角余弦值为_14已知向量,点,记为在向量上的投影向量,若,则_15如图所示,为了测量、两岛屿的距离,小明在处观测到、分别在处的北偏西、北偏东方向,再往正东方向行驶海里至处,观测在处的正北方向,在处的北偏西方向,则、两岛屿的距离为_海里16在中,内角,所对的边分别为,且,则的周长的最大值是_.四、解答题:本题共6小题,共70分解答应写出文字说明、证明过程或演算步骤17随着二胎开放,儿童数量渐增,某市决定充分利用城市空间修建口袋儿童乐园,如图所示:在直径为的半圆空地上,设置扇形区域作为大人体息区,规划两个三角形区域做成小喷泉区(区域)和沙坑滑梯区(区域),其中为直径延长线上一

    5、点,且,为半圆周上一动点,以为边作等边(1)若等边的边长为,试写出关于的函数关系式;(2)问为多少时,儿童游玩区的面积最大?这个最大面积为多少?18已知(1)当k为何值时,与共线?(2)若,且A,B,C三点共线,求m的值19如图,在ABC中,D为BC的四等分点,且靠近点B,E,F分别为AC,AD的三等分点,且分别靠近A,D两点,设(1)试用a,b表示(2)证明:B,E,F三点共线20如图所示,在中,与交于点M过M点的直线l与、分别交于点E,F(1)试用,表示向量;(2)设,求证:是定值21已知(1)当为何值时,与共线?(2)若且A,B,C三点共线,求m的值22 设,点P是直线上的一个动点,.若

    6、,求实数的取值范围一、选择题:本题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的1,是半径为1的圆的两条直径,则( )ABCD【答案】B【解析】如图所示,是半径为1的圆的两条直径,且,即为的中点,则,故选:B.2在中,则此三角形( )A无解B一解C两解D解的个数不确定【答案】C【解析】由正弦定理可知:,因为,所以,又因为,所以,或,因此此三角形有两解,故选:C3设为单位向量,满足,设的夹角为,则的可能取值为( )ABCD【答案】C【解析】因为为单位向量,不妨设,且,所以,又因为,所以,化简得,所以,当时,故选:C4已知在锐角三角形中,角,所对的边分别为,若,则

    7、的取值范围是( )ABCD【答案】C【解析】由及余弦定理,可得正弦定理边化角,得是锐角三角形,即,那么:则,故选:5在中,角所对的边分别为,已知,则( )AB或CD或【答案】C【解析】依题意,由正弦定理得,即.由于,所以.故选:C6如图,中,角的平分线交边于点,则( )ABCD【答案】D【解析】在中,根据正弦定理得,由,所以,所以,所以,则,所以,在中,由余弦定理得,所以故选:D7圣索菲亚教堂(英语:SAINT SOPHIA CATHEDRAL)坐落于中国黑龙江省,是一座始建于1907年拜占庭风格的东正教教堂,距今已有114年的历史,为哈尔滨的标志性建筑1996年经国务院批准,被列为第四批全国

    8、重点文物保护单位,是每一位到哈尔滨旅游的游客拍照打卡的必到景点其中央主体建筑集球,圆柱,棱柱于一体,极具对称之美,可以让游客从任何角度都能领略它的美小明同学为了估算索菲亚教堂的高度,在索菲亚教堂的正东方向找到一座建筑物,高为,在它们之间的地面上的点(三点共线)处测得楼顶,教堂顶的仰角分别是和,在楼顶处测得塔顶的仰角为,则小明估算索菲亚教堂的高度为( )ABCD【答案】D【解析】由题意知:,所以在中,在中,由正弦定理得 所以 ,在中,故选:D8在中,角所对的边分别为,且点满足,若,则的最大值为( )ABCD【答案】A【解析】因为,所以,所以,所以,所以,整理得,所以,因为,所以,所以,解得.所以

    9、的最大值为故选:A二、选择题:本题共4小题,每小题5分,共20分在每小题给出的选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分9在中,角的对边分别为,若,则角可为( )ABCD【答案】BC【解析】由余弦定理得:,又,整理可得:;对于A,则,A错误;对于B,则,B正确;对于C,则,C正确;对于D,则,D错误.故选:BC.10如图所示,在中,点D在边BC上,且,点E在边AD上,且,则( )ABCD【答案】BD【解析】解:,点在边上,故选:11如果是平面内两个不共线的向量,那么下列说法中不正确的是( )A+ (,R)可以表示平面内的所有向量B对于平面内任一向量,使=+的实

    10、数对(,)有无穷多个C若向量1+1与2+2共线,则有且只有一个实数,使得1+1=(2+2)D若实数,使得,则=0【答案】BC【解析】由平面向量基本定理可知,A,D是正确的.对于B,由平面向量基本定理可知,若一个平面的基底确定,那么该平面内的任意一个向量在此基底下的实数对是唯一的.对于C,当两个向量均为零向量时,即1=2=1=2=0时,这样的有无数个,或当1+1为非零向量,而2+2为零向量(2=2=0),此时不存在.故选:BC.12已知是边长为2的等边三角形,分别是、上的两点,且,与交于点,则下列说法正确的是( )ABCD在方向上的投影为【答案】BCD【解析】由题E为AB中点,则,以E为原点,E

    11、A,EC分别为x轴,y轴正方向建立平面直角坐标系,如图所示:所以,设,所以,解得:,即O是CE中点,所以选项B正确;,所以选项C正确;因为,所以选项A错误;,在方向上的投影为,所以选项D正确.故选:BCD三、填空题:本题共4小题,每小题5分,共20分13已知向量,那么向量与的夹角余弦值为_【答案】【解析】因为,所以向量与的夹角余弦值为故答案为:14已知向量,点,记为在向量上的投影向量,若,则_【答案】【解析】因为点,所以,又向量,所以在向量上的投影,所以因为,所以,故答案为:15如图所示,为了测量、两岛屿的距离,小明在处观测到、分别在处的北偏西、北偏东方向,再往正东方向行驶海里至处,观测在处的

    12、正北方向,在处的北偏西方向,则、两岛屿的距离为_海里【答案】【解析】由题意知,在中,由正弦定理得,在中,所以,为等腰直角三角形,则,在中,由余弦定理可得(海里).故答案为:16在中,内角,所对的边分别为,且,则的周长的最大值是_.【答案】9【解析】对已知等式进行角化边可得:,因为,所以,即,因为,所以,所以,即,当且仅当时,所以,即的周长的最大值为9.故答案为:9.四、解答题:本题共6小题,共70分解答应写出文字说明、证明过程或演算步骤17随着二胎开放,儿童数量渐增,某市决定充分利用城市空间修建口袋儿童乐园,如图所示:在直径为的半圆空地上,设置扇形区域作为大人体息区,规划两个三角形区域做成小喷

    13、泉区(区域)和沙坑滑梯区(区域),其中为直径延长线上一点,且,为半圆周上一动点,以为边作等边(1)若等边的边长为,试写出关于的函数关系式;(2)问为多少时,儿童游玩区的面积最大?这个最大面积为多少?【答案】(1),其中;(2)当,儿童游玩区的面积最大,最大值为.【解析】(1),在中,由余弦定理可得,所以,其中;(2),所以, ,则,当时,即当时,四边形的面积取最大值.18已知(1)当k为何值时,与共线?(2)若,且A,B,C三点共线,求m的值【答案】(1)k;(2)m.【解析】(1) k(1,0)(2,1)(k2,1),(1,0)2(2,1)(5,2)因为与共线,所以2(k2)(1)50,即2

    14、k450,得k.(2) 2(1,0)3(2,1)(8,3),(1,0)m(2,1)(2m1,m)因为A,B,C三点共线,所以.所以8m3(2m1)0,即2m30,所以m.19如图,在ABC中,D为BC的四等分点,且靠近点B,E,F分别为AC,AD的三等分点,且分别靠近A,D两点,设(1)试用a,b表示(2)证明:B,E,F三点共线【答案】(1)ba,ab,ab;(2)证明见解析.【解析】(1) 由题意,得ba,a(ba)ab,ab.(2) 因为ab,a(ab)aba+b,所以,所以与共线又与有公共点B,所以B,E,F三点共线20如图所示,在中,与交于点M过M点的直线l与、分别交于点E,F(1)

    15、试用,表示向量;(2)设,求证:是定值【答案】(1);(2)证明见解析【解析】(1)由A,M,D三点共线可得存在实数m()使得:,又,故,由C,M,B三点共线可得存在实数n()使得:,又,故,由题意,不共线,则: ,解得,故;(2)由E,M,F三点共线,可设(),由,则:,由(1)知,则:,即,所以,所以是定值21已知(1)当为何值时,与共线?(2)若且A,B,C三点共线,求m的值【答案】(1);(2).【解析】(1)由,可得,因为与共线,所以,即,解得.(2)因为A,B,C三点共线,所以,即,所以,解得.22设,点P是直线上的一个动点,.若,求实数的取值范围.【答案】【解析】设,则由可得,则可解得,则,则可得,解得

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2023届高考数学一轮复习 单元双优测评卷——第六单元 平面向量及其应用A卷(含解析).docx
    链接地址:https://www.ketangku.com/wenku/file-260756.html
    相关资源 更多
  • 人教版数学三年级(上册)期末综合素养提升题【各地真题】.docx人教版数学三年级(上册)期末综合素养提升题【各地真题】.docx
  • 人教版数学三年级(上册)期末综合素养提升题【原创题】.docx人教版数学三年级(上册)期末综合素养提升题【原创题】.docx
  • 江苏省南通市通州区2012年暑假补充练习 高二数学单元检测十二:综合试卷(2)(市中马进).doc江苏省南通市通州区2012年暑假补充练习 高二数学单元检测十二:综合试卷(2)(市中马进).doc
  • 人教版数学三年级(上册)期末综合素养提升题【历年真题】.docx人教版数学三年级(上册)期末综合素养提升题【历年真题】.docx
  • 2023年苏教版四年级数学下册第三单元测试卷及答案一.doc2023年苏教版四年级数学下册第三单元测试卷及答案一.doc
  • 江苏省南通市通州区2012年暑假补充练习 高二数学单元检测五:三角与向量(刘桥汤建南).doc江苏省南通市通州区2012年暑假补充练习 高二数学单元检测五:三角与向量(刘桥汤建南).doc
  • 人教版数学三年级(上册)期末综合素养提升题【典型题】.docx人教版数学三年级(上册)期末综合素养提升题【典型题】.docx
  • 2023年苏教版四年级下册数学试卷及答案.doc2023年苏教版四年级下册数学试卷及答案.doc
  • 江苏省南通市通州区2012年暑假补充练习 高二数学单元检测九:直线与圆(三余曹均).doc江苏省南通市通州区2012年暑假补充练习 高二数学单元检测九:直线与圆(三余曹均).doc
  • 人教版数学三年级(上册)期末综合素养提升题【典优】.docx人教版数学三年级(上册)期末综合素养提升题【典优】.docx
  • 2023年苏教版六年级数学下册第四单元测试卷及答案一.doc2023年苏教版六年级数学下册第四单元测试卷及答案一.doc
  • 江苏省南通市通州区2012年暑假补充练习 高二数学单元检测一:集合与逻辑(平潮中学钱春林).doc江苏省南通市通州区2012年暑假补充练习 高二数学单元检测一:集合与逻辑(平潮中学钱春林).doc
  • 人教版数学三年级(上册)期末综合素养提升题【全国通用】.docx人教版数学三年级(上册)期末综合素养提升题【全国通用】.docx
  • 正太萝莉教你数学:一顿饭吃完就知啥是“映射”.doc正太萝莉教你数学:一顿饭吃完就知啥是“映射”.doc
  • 江苏省南通市通州区2012年暑假自主学习 高一数学单元检测四:不等式与线性规划(平潮金志军).doc江苏省南通市通州区2012年暑假自主学习 高一数学单元检测四:不等式与线性规划(平潮金志军).doc
  • 2023年苏教版五年级数学下册第六单元测试卷及答案一.doc2023年苏教版五年级数学下册第六单元测试卷及答案一.doc
  • 人教版数学三年级(上册)期末综合素养提升题【全优】.docx人教版数学三年级(上册)期末综合素养提升题【全优】.docx
  • 江苏省南通市通州区2012年暑假自主学习 高一数学单元检测十:函数(2)(三余陈晓波).doc江苏省南通市通州区2012年暑假自主学习 高一数学单元检测十:函数(2)(三余陈晓波).doc
  • 2023年苏教版五年级数学下册第一单元测试卷及答案一.doc2023年苏教版五年级数学下册第一单元测试卷及答案一.doc
  • 江苏省南通市通州区2012年暑假自主学习 高一数学单元检测十一:综合试卷1(市中王新星).doc江苏省南通市通州区2012年暑假自主学习 高一数学单元检测十一:综合试卷1(市中王新星).doc
  • 2023年苏教版三年级数学下册第八单元测试卷及答案一.doc2023年苏教版三年级数学下册第八单元测试卷及答案一.doc
  • 人教版数学三年级(上册)期末综合素养提升题【a卷】.docx人教版数学三年级(上册)期末综合素养提升题【a卷】.docx
  • 2023年苏教版三年级数学下册期末测试卷及答案一.doc2023年苏教版三年级数学下册期末测试卷及答案一.doc
  • 人教版数学三年级(上册)期末综合素养提升题ab卷.docx人教版数学三年级(上册)期末综合素养提升题ab卷.docx
  • 江苏省南通市通州区2012届高三回归课本专项检测(数学).doc江苏省南通市通州区2012届高三回归课本专项检测(数学).doc
  • 人教版数学三年级(上册)期末综合素养提升题a4版打印.docx人教版数学三年级(上册)期末综合素养提升题a4版打印.docx
  • 2023年苏教版一年级数学下册第六单元测试卷附答案一.doc2023年苏教版一年级数学下册第六单元测试卷附答案一.doc
  • 人教版数学三年级(上册)期末综合素养提升题a4版可打印.docx人教版数学三年级(上册)期末综合素养提升题a4版可打印.docx
  • 2023年苏教版一年级数学下册期末测试卷及答案一.doc2023年苏教版一年级数学下册期末测试卷及答案一.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1