2023届高考数学一轮复习 近8年真题分类汇编 专题9 导数大题1.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届高考数学一轮复习 近8年真题分类汇编 专题9 导数大题1 2023 高考 数学 一轮 复习 年真题 分类 汇编 专题 导数
- 资源描述:
-
1、专题9导数大题1考试说明:1、了解函数的单调性和导数的关系;能利用导数研究函数的单调性,回求函数的单调区间;2、 了解函数在某点取得极值时的充要条件,会用导数求函数的极值,会求闭区间上函数的最大值和最小值。3、 了解导数的综合应用题型特点:导数的综合应用是历年高考的热点,试题难度通常较大,多以压轴题的形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根;利用导数研究恒成立问题等等,体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用。一、 典例分析命题角度1利用导数研究函数的单调性问题例1(2021乙卷)已知函数(1)讨论的单调性
2、;(2)求曲线过坐标原点的切线与曲线的公共点的坐标命题角度2利用导数研究函数的极值、最值问题例2(2019全国)已知函数(1)当时,求的单调区间;(2)若在区间,的最小值为,求命题角度3利用导数研究函数的方程的根(或函数的零点)例3(2020浙江)已知,函数,其中为自然对数的底数()证明:函数在上有唯一零点;()记为函数在上的零点,证明:();()二、 真题集训1(2020新课标)已知函数(1)若,求的取值范围;(2)设,讨论函数的单调性2(2019江苏)设函数,为的导函数(1)若,(4),求的值;(2)若,且和的零点均在集合,1,中,求的极小值;(3)若,且的极大值为,求证:3(2021浙江
3、)设,为实数,且,函数()求函数的单调区间;()若对任意,函数有两个不同的零点,求的取值范围;()当时,证明:对任意,函数有两个不同的零点,满足(注是自然对数的底数)典例分析答案命题角度1利用导数研究函数的单调性问题例1(2021乙卷)已知函数(1)讨论的单调性;(2)求曲线过坐标原点的切线与曲线的公共点的坐标分析:(1)对函数求导,分及讨论导函数与零的关系,进而得出的单调性情况;(2)先设出切点,表示出切线方程,根据切线过原点,可求得切线方程,将切线方程与曲线联立,即可求得公共点坐标解答:解:(1),当,即时,由于的图象是开口向上的抛物线,故此时,则在上单调递增;当,即时,令,解得,令,解得
4、或,令,解得,在,单调递增,在,单调递减;综上,当时,在上单调递增;当时,在单调递增,在单调递减(2)设曲线过坐标原点的切线为,切点为,则切线方程为,将原点代入切线方程有,解得,切线方程为,令,即,解得或,曲线过坐标原点的切线与曲线的公共点的坐标为和点评:本题考查导数的几何意义以及利用导数研究函数的单调性,考查分类讨论思想及运算求解能力,属于中档题命题角度2利用导数研究函数的极值、最值问题例2(2019全国)已知函数(1)当时,求的单调区间;(2)若在区间,的最小值为,求分析:(1)将代入中,然后求导,根据导函数的零点判断单调性导函数在各区间上的符合,从而得到单调区间;(2)对求导后,根据导函
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
