2021-2022高中数学人教版必修2教案:2-3-4 平面与平面垂直的性质 (系列一) WORD版含答案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2022高中数学人教版必修2教案:2-3-4 平面与平面垂直的性质 系列一 WORD版含答案 2021 2022 高中 学人 必修 教案 平面 垂直 性质 系列 WORD 答案
- 资源描述:
-
1、2.3.4 平面与平面垂直的性质一、教材分析 空间中平面与平面之间的位置关系中,垂直是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中平面与平面垂直的性质定理具备以下两个特点:(1)它是立体几何中最难、最“高级”的定理.(2)它往往又是一个复杂问题的开端,即先由面面垂直转化为线面垂直,否则无法解决问题.因此,面面垂直的性质定理是立体几何中最重要的定理.二、教学目标1知识与技能(1)使学生掌握平面与平面垂直的性质定理;(2)能运用性质定理解决一些简单问题;(3)了解平面与平面垂直的判定定理和性质定理间的相互关系.2过程与方法(1)让学生在观察物体模型的基础上,进行操作确
2、认,获得对性质定理正确性的认识;3情感、态度与价值观通过“直观感知、操作确认、推理证明”,培养学生空间概念、空间想象能力以及逻辑推理能力.三、教学重点与难点教学重点:平面与平面垂直的性质定理.教学难点:平面与平面性质定理的应用.四、课时安排1课时五、教学设计(一)复习(1)面面垂直的定义.如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直.(2)面面垂直的判定定理.两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.两个平面垂直的判定定理符号表述为:.两个平面垂直的判定定理图形表述为:图1(二)导入新课思路1.(情境导入)黑板所在平面与地面所在平面
3、垂直,你能否在黑板上画一条直线与地面垂直?思路2.(事例导入)如图2,长方体ABCDABCD中,平面AADD与平面ABCD垂直,直线AA垂直于其交线AD.平面AADD内的直线AA与平面ABCD垂直吗?图2(二)推进新课、新知探究、提出问题如图3,若,=CD,AB,ABCD,ABCD=B.请同学们讨论直线AB与平面的位置关系.图3用三种语言描述平面与平面垂直的性质定理,并给出证明.设平面平面,点P,Pa,a,请同学们讨论直线a与平面的关系.分析平面与平面垂直的性质定理的特点,讨论应用定理的难点.总结应用面面垂直的性质定理的口诀.活动:问题引导学生作图或借助模型探究得出直线AB与平面的关系.问题引
4、导学生进行语言转换.问题引导学生作图或借助模型探究得出直线a与平面的关系.问题引导学生回忆立体几何的核心,以及平面与平面垂直的性质定理的特点.问题引导学生找出应用平面与平面垂直的性质定理的口诀.讨论结果:通过学生作图或借助模型探究得出直线AB与平面垂直,如图3.两个平面垂直的性质定理用文字语言描述为:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一平面.两个平面垂直的性质定理用图形语言描述为:如图4.图4两个平面垂直的性质定理用符号语言描述为:AB.两个平面垂直的性质定理证明过程如下:图5如图5,已知,=a,AB,ABa于B.求证:AB.证明:在平面内作BECD垂足为B,则AB
5、E就是二面角CD的平面角.由,可知ABBE.又ABCD,BE与CD是内两条相交直线,AB.问题也是阐述面面垂直的性质,变为文字叙述为:求证:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.下面给出证明.如图6,已知,P,Pa,a.求证:a.图6证明:设=c,过点P在平面内作直线bc,,b.而a,Pa,经过一点只能有一条直线与平面垂直,直线a应与直线b重合.那么a. 利用“同一法”证明问题,主要是在按一般途径不易完成问题的情形下所采用的一种数学方法,这里要求做到两点.一是作出符合题意的直线b,不易想到,二是证明直线b和直线a重合,相对容易些.点P的位置由投
6、影所给的图及证明过程可知,可以在交线上,也可以不在交线上. 我认为立体几何的核心是:直线与平面垂直,因为立体几何的几乎所有问题都是围绕它展开的,例如它不仅是线线垂直与面面垂直相互转化的桥梁,而且由它还可以转化为线线平行,即使作线面角和二面角的平面角也离不开它.两个平面垂直的性质定理的特点就是帮我们找平面的垂线,因此它是立体几何中最重要的定理. 应用面面垂直的性质定理口诀是:“见到面面垂直,立即在一个平面内作交线的垂线”.(四)应用示例思路1例1 如图7,已知,a,a,试判断直线a与平面的位置关系.图7解:在内作垂直于与交线的垂线b,b.a,ab.a,a.变式训练 如图8,已知平面交平面于直线a
7、.、同垂直于平面,又同平行于直线b.求证:(1)a;(2)b. 图8 图9证明:如图9,(1)设=AB,=AC.在内任取一点P并在内作直线PMAB,PNAC.,PM.而a,PMa.同理,PNa.又PM,PN,a.(2)在a上任取点Q,过b与Q作一平面交于直线a1,交于直线a2.b,ba1.同理,ba2.a1、a2同过Q且平行于b,a1、a2重合.又a1,a2,a1、a2都是、的交线,即都重合于a.ba1,ba.而a,b.点评:面面垂直的性质定理作用是把面面垂直转化为线面垂直,见到面面垂直首先考虑利用性质定理,其口诀是:“见到面面垂直,立即在一个平面内作交线的垂线”.例2 如图10,四棱锥PAB
8、CD的底面是AB=2,BC=的矩形,侧面PAB是等边三角形,且侧面PAB底面ABCD. 图10 图11(1)证明侧面PAB侧面PBC;(2)求侧棱PC与底面ABCD所成的角;(3)求直线AB与平面PCD的距离.(1)证明:在矩形ABCD中,BCAB,又面PAB底面ABCD,侧面PAB底面ABCD=AB,BC侧面PAB.又BC侧面PBC,侧面PAB侧面PBC.(2)解:如图11,取AB中点E,连接PE、CE,又PAB是等边三角形,PEAB.又侧面PAB底面ABCD,PE面ABCD.PCE为侧棱PC与底面ABCD所成角.PE=BA=,CE=,在RtPEC中,PCE=45为所求.(3)解:在矩形AB
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-461921.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
四年级下册语文课件-3小溪流的歌|鄂教版 (共15张PPT).ppt
