2021_2022学年新教材高中数学第五章计数原理单元素养评价含解析北师大版选择性必修第一册202106021113.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 _2022 学年 新教材 高中数学 第五 计数 原理 单元 素养 评价 解析 北师大 选择性 必修 一册 202106021113
- 资源描述:
-
1、单元素养评价(四)(第五章)(120分钟150分)一、单选题(每小题5分,共40分)1李芳有4件不同颜色的衬衣,3件不同花样的裙子,另有两套不同样式的连衣裙“五一”节需选择一套服装参加歌舞演出,则不同的选择方式有()A24种 B14种 C10种 D9种【解析】选B.由题意可得李芳不同的选择方式有43214种2自2020年起,山东夏季高考成绩由“33”组成,其中第一个“3”指语文、数学、英语3科,第二个“3”指学生从物理、化学、生物、政治、历史、地理6科中任选3科作为选考科目某同学计划从物理、化学、生物3科中任选两科,从政治、历史、地理3科中任选1科作为选考科目,则该同学3科选考科目的不同选法的
2、种数为()A6 B7 C8 D9【解析】选D.某同学计划从物理、化学、生物3科中任选两科,从政治、历史、地理3科中任选1科作为选考科目,则该同学3科选考科目的不同选法的种数为CC9.3电影夺冠讲述中国女排姑娘们顽强奋斗、为国争光的励志故事,是一部见证中国体育改革40年的力作,该影片于2020年9月25日正式上映在夺冠上映当天,一对夫妇带着他们的两个小孩一起去观看该影片,订购的4张电影票恰好在同一排且连在一起为安全起见,影院要求每个小孩子要有家长相邻陪坐,则不同的坐法种数是()A8 B12 C16 D20【解析】选C.根据题意,将两名家长、孩子全排列,有A24种排法,其中两个孩子相邻且在两端的情
3、况有AAA8种,则每个小孩子要有家长相邻陪坐的不同坐法有24816种4.如图所示,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多的栽种方案有() A180种 B240种 C360种 D420种【解析】选D.由题意知,最少用三种颜色的花卉,按照花卉选种的颜色可分为三类方案,即用三种颜色,四种颜色,五种颜色.当用三种颜色时,花池2,4同色和花池3,5同色,此时共有A种方案当用四种颜色时,花池2,4同色或花池3,5同色,故共有2A种方案当用五种颜色时有A种方案因此所有栽种方案为A2AA420种5甲、乙、丙、丁、戊5名学生进行投篮比赛,得出了
4、第1至第5名的不同名次,甲、乙两人向裁判询问成绩,裁判对甲说:“很遗憾,你和乙都未拿到冠军”对乙说:“你当然不是最差的”根据裁判的回答,5人的名次排列共有_种不同的情况()A54B108C210D96【解题指南】甲、乙不是第一名且乙不是最后一名乙的限制最多,故先排乙,有3种情况;再排甲,也有3种情况;余下的问题是三个元素在三个位置全排列,根据分步乘法计数原理得到结果【解析】选A.第一名不是甲和乙,则只能是丙、丁、戊三人中某一个,有C种选法,而乙不是最差的,则乙只可能是第二、三、四名,有C种可能,再将剩下的三人排成一列,依次插入即可,由分步乘法计数原理可知,共有CCA54种不同的情况6若二项式(
5、2x)10,按(2x)10a0a1(1x)a2(1x)2a10(1x)10的方式展开,则展开式中a8的值为()A90 B180 C360 D405【解析】选D.由题意得,(2x)10(2x)103(1x)10,所以展开式的第9项为T9C(3)2(1x)8405(1x)8,即a8405.【加练固】设(2x)5a0a1xa2x2a5x5,那么的值为()ABCD1【解析】选B.令x1,可得a0a1a2a3a4a51,再令x1可得a0a1a2a3a4a535.两式相加除以2求得a0a2a4122,两式相减除以2可得a1a3a5121.由题意得a51,故.7甲、乙、丙 3人站到共有7级的台阶上,若每级台
6、阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是()A210 B336 C84 D343【解析】选B.由题意知本题需要分组解决,因为对于7级台阶上每一级只站一人有A种;若有一级台阶有2人另一个是1人,则共有CA种,所以根据分类加法计数原理知共有不同的站法种数为ACA336.8已知某动点在平面直角坐标系第一象限的整点上运动(含x,y正半轴上的整点),其运动规律为(m,n)(m1,n1)或(m,n)(m1,n1).若该动点从原点出发,经过6步运动到点(6,2),则不同的运动轨迹有()A15种 B14种 C9种 D103种【解析】选C.由运动规律可知,每一步的横坐标都增加1,只需考虑
7、纵坐标的变化,而纵坐标每一步增加1(或减少1),经过6步变化后,结果由0变到2,因此这6步中有2步是按照(m,n)(m1,n1)运动的,有4步是按照(m,n)(m1,n1)运动的,因此,共有C15种,而此动点只能在第一象限的整点上运动(含x,y正半轴上的整点),当第一步(m,n)(m1,n1)时不符合要求,有C种;当第一步(m,n)(m1,n1),但第二、三两步为(m,n)(m1,n1)时也不符合要求,有1种,故要减去不符合条件的C16种,故共有1569种二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9有四位学生参加三项不同的竞赛,则下列说法正确的是()
8、A每位学生必须参加一项竞赛,则不同的参赛方法有64种B每项竞赛只许有一位学生参加,则不同的参赛方法有81种C每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有24种D每位学生只参加一项竞赛,每项竞赛至少有一位学生参加,则不同的参赛方法有36种【解析】选CD.根据题意,依次分析选项:对于A,每位学生必须参加一项竞赛,则每位学生都有三种参赛方法,故四位学生有N33333481种A不正确;对于B,每项竞赛只许有一位学生参加,每一项可以挑4名不同的学生,故有N4444364种B不正确;对于C,原问题等价于从4个学生中挑选3个学生去参加三个项目的竞赛,每人参加一项,故共有43224
9、种,C正确;对于D,先把四个学生分成三组,再分配到三个比赛中,故共有CA36种D正确10若C3C,则m的取值可能是()A6 B7 C8 D9【解析】选BC.根据题意,对于C和3C,有0m18且0m8,则有1m8,若C3C,则有3,变形可得:m273m,解得:m,综合可得:0)的展开式中第5项与第7项的二项式系数相等,且展开式的各项系数之和为1 024,则下列说法正确的是()A展开式中奇数项的二项式系数和为256B展开式中第6项的系数最大C展开式中存在常数项D展开式中含x15项的系数为45【解析】选BCD.因为(a0)的展开式中第5项与第7项的二项式系数相等;所以CCn10;因为展开式的各项系数
10、之和为1 024,所以(a1)101 024;因为a0;所以a1.原二项式的二项式通项为:Tk1C(x2)10kCx20k;展开式中奇数项的二项式系数和为:1 024512,故A错;因为本题中二项式系数和项的系数一样,且展开式有11项,故展开式中第6项的系数最大,B对;令20k0k8,即展开式中存在常数项,C对;令20k15k2,C45,D对三、填空题(每小题5分,共20分)13(2020全国卷)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有_种【解析】因为4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-465542.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
《优品》高中语文人教版必修1 第一单元第2课诗两首《雨巷》 课件(系列五).ppt
