《优化探究》2017届高三数学人教版A版数学(理)高考一轮复习教案:9.1 分类加法计数原理与分步乘法计数原理 WORD版含答案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优化探究 优化探究2017届高三数学人教版A版数学理高考一轮复习教案:9.1 分类加法计数原理与分步乘法计数原理 WORD版含答案 优化 探究 2017 届高三数 学人 数学 高考 一轮 复习
- 资源描述:
-
1、高考资源网() 您身边的高考专家第一节分类加法计数原理与分步乘法计数原理两个原理分类加法计数原理、分步乘法计数原理(1)理解分类加法计数原理和分步乘法计数原理(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题知识点两个原理1分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有Nmn种不同的方法2分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有Nmn种不同的方法易误提醒(1)分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,
2、类与类之间是独立的(2)分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步与步之间是相关联的自测练习1从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有()A30 B20 C10 D6解析:从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类,取出的两数都是偶数,共有3种方法;取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N336种答案:D2用0,1,9十个数字,可以组成有重复数字的三位数的个数为()A243 B252 C261 D279解析:0,1,2,9共能组成91010900(个)三位数,
3、其中无重复数字的三位数有998648(个),有重复数字的三位数有900648252(个)答案:B考点一分类加法计数原理|1a,b,c,d,e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同选法的种数是()A20B16C10 D6解析:当a当组长时,则共有144种选法;当a不当组长时,又因为a也不能当副组长,则共有4312种选法因此共有41216种选法答案:B2有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有()A8种 B9种C10种 D11种解析:法一:设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A监考b,
4、则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理共有3339(种)法二:班级按a,b,c,d的顺序依次排列,为避免重复或遗漏现象,教师的监考顺序可用“树形图”表示如下:共有9种不同的监考方法答案:B3在某校举行的羽毛球两人决赛中,采用5局3胜制的比赛规则,先赢3局者获胜,直到决出胜负为止若甲、乙两名同学参加比赛,则所有可能出现的情形(个人输赢局次的不同视为不同情形)共有()A6种 B12种C18种 D20种解析:分三种情况:恰好打3局(一人赢3局),有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有2C6(种)情形;恰
5、好打5局(一人前4局中赢2局,输2局,第5局赢),共有2C12(种)情形所有可能出现的情形共有261220(种)答案:D利用加法原理解决问题时的注意点(1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;(2)分类时,注意完成这件事件的任何一种方法必须属于某一类,不能重复考点二分步乘法原理|有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这项任务,不同的选法有()A1 260种B2 025种C2 520种 D5 040种解析第一步,从10人中选派2人承担任务甲,有C种选派方法;第二步,从余下的8人中选派1人承担任务乙,有C种选派方法;第三步,再从余
6、下的7人中选派1人承担任务丙,有C种选派方法根据分步乘法计数原理,知选法为CCC2 520种答案C利用分步乘法计数原理解决问题时应注意(1)要按事件发生的过程合理分步,即分步是有先后顺序的(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事 从1,0,1,2这四个数中选三个不同的数作为函数f(x)ax2bxc的系数,则可组成_个不同的二次函数,其中偶函数有_个(用数字作答)解析:一个二次函数对应着a,b,c(a0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有33218个二次函数若二次函数为偶函数,则b0,同上可知共有326个偶函数答案:1
7、86考点三两个原理的应用|两个原理的应用类型主要有:1涂色问题2几何问题3集合问题探究一涂色问题1.(2015湖南十二校联考)用红、黄、蓝三种颜色去涂图中标号为1,2,9的9个小正方形(如图),使得任意相邻(有公共边)小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有_种123456789解析:第一步,从红、黄、蓝三种颜色中任选一种去涂标号为“1、5、9”的小正方形,涂法有3种;第二步,涂标号为“2、3、6”的小正方形,若“2、6”同色,涂法有22种,若“2、6”不同色,涂法有21种;第三步:涂标号为“4、7、8”的小正方形,涂法同涂标号为“2、3、6
8、”的小正方形的方法一样因此符合条件的所有涂法共有3(2221)(2221)108(种)答案:108探究二几何问题2如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”,在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A60B48C36 D24解析:长方体的6个表面构成的“平行线面组”有6636个,6个对角面构成的“平行线面组”有6212个,共有361248个,故选B.答案:B探究三集合问题3(2015保定市高三调研考试)已知集合M1,2,3,4,集合A,B为集合M的非空子集若对xA,yB,xy恒成立,则称(A,B)为集合M的一个“子集对”
9、,则集合M的“子集对”共有_个解析:当A1时,B有231种情况,当A2时,B有221种情况,当A3时,B有1种情况,当A1,2时,B有221种情况,当A1,3,2,3,1,2,3时,B均有1种情况,所以满足题意的“子集对”共有7313317个答案:17用两个计数原理解决计数问题时,关键是明确需要分类还是分步(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成了任务,根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数(3)对于复杂问题,可同时运用两个计数原理或借助列表、画图的方法来帮助分析2
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-466309.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
船舶航行中违法排放生活污水案件的查处.pdf
