分享
分享赚钱 收藏 举报 版权申诉 / 15

类型2021中考数学冲刺专题训练 图形与变换(含解析).doc

  • 上传人:a****
  • 文档编号:466550
  • 上传时间:2025-12-08
  • 格式:DOC
  • 页数:15
  • 大小:947KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021中考数学冲刺专题训练 图形与变换含解析 2021 中考 数学 冲刺 专题 训练 图形 变换 解析
    资源描述:

    1、图形与变换一、选择题(本大题共8个小题,每小题5分,共40分在每小题给出的四个选项中,只有一个选项是符合题目要求的)1下列图形既是中心对称图形又是轴对称图形的是()ABCD【答案】C【解析】A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:C2如图所示的正六棱柱的主视图是( )ABCD【答案】A【解析】从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同故选A3如图,将线段 AB 先向右平移 5 个单位,再将所得线段绕原点按顺时

    2、针方向旋转 90,得到线段 AB ,则点 B 的对应点 B的坐标是( )A(-4 , 1)B( 1, 2)C(4 ,- 1)D(1 ,- 2)【答案】D【解析】将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90,则B对应坐标为(1,-2),故选D4如图,菱形的对角线,交于点,将沿点到点的方向平移,得到,当点与点重合时,点与点之间的距离为( )ABCD【答案】C【解析】由菱形的性质得为直角三角形故选C5如图,在平面直角坐标系中,将四边形向下平移,再向右平移得到四边形,已知,则点坐标为( )ABCD【答案】B【解析】图形向下平移,纵坐标发生变化,图形向右平移,横坐标发生变化.

    3、A(3,5)到A1(3,3)得向右平移3(3)6个单位,向下平移532个单位.所以B(4,3)平移后B1(2,1).故选B.6如图,将绕点逆时针旋转70到的位置,若,则()A45B40C35D30【答案】D【解析】绕点逆时针旋转70到的位置,而,故选:D7如图,以点O为位似中心,把放大为原图形的2倍得到,以下说法中错误的是( )AB点C、点O、点C三点在同一直线上CD【答案】C【解析】以点O为位似中心,把放大为原图形的2倍得到,点C、点O、点C三点在同一直线上,C选项错误,符合题意故选C8如图,在边长为的菱形中,过点作于点,现将沿直线翻折至的位置,与交于点.则等于( )ABCD【答案】A【解析

    4、】B=30,AB=,AEBCAE=,BE=BF=3,EC=-,则CF=3-又CGAB解得CG=.二、填空题(本大题共4个小题,每小题6分,共24分)9如图,在平面直角坐标系中,的直角顶点的坐标为,点在轴正半轴上,且将先绕点逆时针旋转,再向左平移3个单位,则变换后点的对应点的坐标为_【答案】【解析】点的坐标为,点的坐标为,如图所示,将先绕点逆时针旋转90,则点的坐标为,再向左平移3个单位长度,则变换后点的对应点坐标为,故答案为:10如图,在平面直角坐标系中,由绕点顺时针旋转而得,则所在直线的解析式是_【答案】【解析】 过点作轴于点,BOA=ADC=90.BAC=90,BAO+CAD=90.ABO

    5、+BAO=90,CAD=ABO.AB=AC,.设直线的解析式为,将点,点坐标代入得直线的解析式为故答案为:11一副三角板如图放置,将三角板ADE绕点A逆时针旋转,使得三角板ADE的一边所在的直线与BC垂直,则的度数为_.【答案】15或60.【解析】如下图,当DEBC时,如下图,CFD60,旋转角为:CAD60-4515;(2)当ADBC时,如下图,旋转角为:CAD90-3060;12.如图,已知RtABC中,B=90,A=60,AC=2+4,点M、N分别在线段AC、AB上,将ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当DCM为直角三角形时,折痕MN的长为_【答案】或【解析】分两

    6、种情况:如图,当CDM=90时,CDM是直角三角形,在RtABC中,B=90,A=60,AC=2+4,C=30,AB=AC=+2,由折叠可得,MDN=A=60,BDN=30,BN=DN=AN,BN=AB=,AN=2BN=,DNB=60,ANM=DNM=60,AMN=60,AN=MN=;如图,当CMD=90时,CDM是直角三角形,由题可得,CDM=60,A=MDN=60,BDN=60,BND=30,BD=DN=AN,BN=BD,又AB=+2,AN=2,BN=,过N作NHAM于H,则ANH=30,AH=AN=1,HN=,由折叠可得,AMN=DMN=45,MNH是等腰直角三角形,HM=HN=,MN=

    7、,故答案为:或三、解答题(本大题共3个小题,每小题12分,共36分 解答应写出文字说明、证明过程或演算步骤)13如图,ABC在平面直角坐标系中,顶点的坐标分别为A(-4,4),B(-1,1),C(-1,4)(1)画出与ABC关于y轴对称的A1B1C1(2)将ABC绕点B逆时针旋转90,得到A2BC2,画两出A2BC2(3)求线段AB在旋转过程中扫过的图形面积(结果保留)【答案】(1)作图见解析;(2)作图见解析;(3).【解析】解:(1)如图,AlB1C1为所作.(2)如图,A2BC2为所作;(3)AB=3,所以线段AB在旋转过程中扫过的图形面积=14如图1,在中,点M是AB的中点,连接MC,

    8、点P是线段BC延长线上一点,且,连接MP交AC于点H将射线MP绕点M逆时针旋转交线段CA的延长线于点D(1)找出与相等的角,并说明理由(2)如图2,求的值(3)在(2)的条件下,若,求线段AB的长【答案】(1);理由见解析;(2);(3).【解析】(1)理由如下:,由旋转的性质知,;(2)如图,过点C作交MP于点G,点M是AB的中点,在与中,设,则,在中,;(3)如图,由(2)知则,由(2)知,则,即解得,(舍去)15如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM(1)请直接写出CM和EM的数量关系和位置

    9、关系;(2)把图1中的正方形DEFG绕点D顺时针旋转45,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;(3)把图1中的正方形DEFG绕点D顺时针旋转90,此时点E、G恰好分别落在线段AD、CD上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由【答案】(1)CM=EM,CMEM,理由见解析;(2)(1)中的结论成立,理由见解析;(3)(1)中的结论成立,理由见解析.【解析】(1)如图1,结论:CM=EM,CMEM理由:ADEF,ADBC,BCEF,EFM=HBM,在FME和BMH中,FMEBMH,HM=EM,EF=BH,CD=BC,CE=CH,

    10、HCE=90,HM=EM,CM=ME,CMEM(2)如图2,连接AE,四边形ABCD和四边形EDGF是正方形,FDE=45,CBD=45,点B、E、D在同一条直线上,BCF=90,BEF=90,M为AF的中点,CM=AF,EM=AF,CM=ME,EFD=45,EFC=135,CM=FM=ME,MCF=MFC,MFE=MEF,MCF+MEF=135,CME=360-135-135=90,CMME(3)如图3,连接CF,MG,作MNCD于N,在EDM和GDM中,EDMGDM,ME=MG,MED=MGD,M为BF的中点,FGMNBC,GN=NC,又MNCD,MC=MG,MD=ME,MCG=MGC,MGC+MGD=180,MCG+MED=180,CME+CDE=180,CDE=90,CME=90,(1)中的结论成立

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021中考数学冲刺专题训练 图形与变换(含解析).doc
    链接地址:https://www.ketangku.com/wenku/file-466550.html
    相关资源 更多
  • 【官方原版】2024九省联考数学试卷.pdf【官方原版】2024九省联考数学试卷.pdf
  • 【九省联考模式】2024届吉林长春五校高三上学期联合模拟考试数学试题.pdf【九省联考模式】2024届吉林长春五校高三上学期联合模拟考试数学试题.pdf
  • 【九省联考】河南部分重点高中2024届高三上学期期末联考数学试卷.pdf【九省联考】河南部分重点高中2024届高三上学期期末联考数学试卷.pdf
  • 【九省联考】江苏省四校联合2024届高三新题型适应性考试数学试题.pdf【九省联考】江苏省四校联合2024届高三新题型适应性考试数学试题.pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形8、解三角形及其应用(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形8、解三角形及其应用(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形7、三角函数模型及其应用(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形7、三角函数模型及其应用(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形6、y%3dA的图象(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形6、y%3dA的图象(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形5、三角函数的图象与性质(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形5、三角函数的图象与性质(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形4、二倍角的正弦、余弦与正切(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形4、二倍角的正弦、余弦与正切(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形3、两角和与差的三角函数(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形3、两角和与差的三角函数(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形2、同角三角函数基本关系及诱导公式(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形2、同角三角函数基本关系及诱导公式(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形1、弧度制与任意角的三角函数(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形1、弧度制与任意角的三角函数(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明7、合情推理与演绎推理(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明7、合情推理与演绎推理(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明5、数列求和(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明5、数列求和(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明4、等差、等比数列的综合(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明4、等差、等比数列的综合(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明3、等比数列(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明3、等比数列(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明2、等差数列(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明2、等差数列(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明1、数列的概念(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明1、数列的概念(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第八章5、空间几何体的表面积与体积(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第八章5、空间几何体的表面积与体积(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第八章3、直线与平面的垂直(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第八章3、直线与平面的垂直(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数9、函数的综合应用(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数9、函数的综合应用(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数8、函数模型及其应用(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数8、函数模型及其应用(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数7、函数与方程(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数7、函数与方程(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数6、函数的图象(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数6、函数的图象(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数5、对数与对数函数(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数5、对数与对数函数(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数3、二次函数与幂函数(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数3、二次函数与幂函数(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数2、函数的奇偶性、单调性及周期性(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数2、函数的奇偶性、单调性及周期性(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数1、函数及其表示(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数1、函数及其表示(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第九章平面解析几何初步9、轨迹问题(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第九章平面解析几何初步9、轨迹问题(pdf含解析).pdf
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1