高三数学《二次函数》复习课件.ppt
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次函数 数学 二次 函数 复习 课件
- 资源描述:
-
1、二次函数高三备课组一基础知识1二次函数的解析式的三种形式(1)一般式:f(x)=ax2+bx+c(a0)(2)顶点式(配方式):f(x)=a(x-h)2+k其中(h,k)是抛物线的顶点坐标。(3)两根式(因式分解):f(x)=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴两交点的坐标。2二次函数f(x)=ax2+bx+c(a0)的图象是一条抛物线,对称轴,顶点坐标(1)a0时,抛物线开口向上,函数在上单调递减,在上单调递增,时,(2)a0时,抛物线开口向下,函数在上单调递增,在上单调递减,时,3二次函数f(x)=ax2+bx+c(a0)当时图象与x轴有两个交点M1(x1,0),M2(
2、x2,0)4二次函数与一元二次方程、一元二次不等式的关系二重点、难点1二次函数的图象与性质、二次函数、二次方程与二次不等式的关系是重点,2二次函数最值问题、一元二次方程根的分布及二次函数的图象性质灵活应用是难点。三题型剖析1求二次函数的解析式例1:已知二次函数f(x)满足f(2)=-1,f(-1)=-1且f(x)的最大值是8,试确定此二次函数。练习:已知二次函数f(x)=ax2+bx+c满足下列条件:(1)图象过原点(2)f(-x+2002)=f(x-2000)(3)方程f(x)=x有重根。变式:书P21例22二次函数在区间上的最值问题练习:已知y=f(x)=x2-2x+3,当xt,t+1时,
3、求函数的最大值和最小值。例2.书P21例1变式:已知函数f(x)=-x2+2ax+1-a在0 x1时有最大值2,求a的值。3一元二次方程根的分布及取值范围练习:方程在(-1,1)上有实根,求k的取值范围。变式:已知关于x的二次方程x2+2mx+2m+1=0(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的取值范围。(2)若方程两根在区间(0,1)内,求m的范围。例3.书P21例3小结1二次函数f(x)=ax2+bx+c(a0)的图象形状、对称轴、开口方向等是处理二次函数问题的重要依据。2二次函数在闭区间上,必有最大值和最小值,当含有参数时,须对参数分区间讨论。3二次方程根的分布问题,可借助二次函数图象列不等式组求解。4三个二次问题(二次函数、二次方程、二次不等式)是中学数学中基础问题,以函数为核心,三者密切相连。作业:优化设计4利用二次函数解数学应用问题备例4:某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租的车将会增加一辆,租出的车每辆需要维护费150元,未租的车每辆每月需要维护费50元,(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少时,租赁公司的月收益最大?最大月收益是多少?
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
