2021届高考数学一轮联考质检卷精编(8)立体几何(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 一轮 联考 质检 精编 立体几何 解析
- 资源描述:
-
1、2021届高三复习数学名校联考质检卷精编(8)立体几何1.在三棱锥中,则三棱锥外接球的体积是( )A B CD 2.已知三棱锥,是边长为4的正三角形,二面角的正切值为,则三棱锥的外接球的体积为( )A. B. C. D. 3.在四面体中,和均是边长为1的等边三角形,已知四面体的四个顶点都在同一球面上,且是该球的直径,则四面体的体积为( )A. B. C. D. 4.在三棱锥中,平面,若该三棱锥的外接球的体积为,则的最大值为( )AB32C50D645.在四棱锥中,是边长为6的正三角形,是正方形,平面平面,则该四棱锥的外接球的体积为( )A.B.C.D.6.三棱锥的所有顶点都在半径为2的球的球面
2、上.若是等边三角形,平面平面, ,则三棱锥体积的最大值为( )A.2B.3C.D.7.在日常生活中,石子是我们经常见到的材料. 现有一棱长均为3的正四棱锥石料的顶角和底面一个角损坏,某雕刻师计划用一平行于底面的截面截四棱锥分别交于点,做出一个体积最大的新的四棱锥为底面的中心,则新四棱锥的表面积为( )A. B. C. D. 8.(多选)如图,在棱长为1的正方体中,为棱上的动点(点不与点,重合),过点作平面分别与棱交于两点,若,则下列说法正确的是( )A平面 B 存在点,使得平面 C 存在点,使得点到平面的距离为 D用过,三点的平面去截正方体,得到的截面一定是梯形9.(多选)如图,在长方体中,分
3、别为棱,的中点,则( )A.四点共面B.平面平面C.直线与所成角的为60D.平面10.(多选)长方体中,点在线段上运动,则下列命题正确的是( )A.直线与平面所成的角为B. 直线和平面平行C.三棱锥的体积为D.二面角所成的角为定值11.已知是球的球面上的四个点,平面,则球的表面积为_12.已知三棱锥,平面,则三棱锥外接球的体积为_.13.在四棱锥中,底面是正方形,底面,分别是棱的中点,对于平面截四棱锥所得的截面多边形,有以下三个结论:截面的面积等于;截面是一个五边形;截面只与四棱锥四条侧棱中的三条相交其中,所有正确结论的序号是_14.如图,在四棱锥中,底面是菱形,.(1)证明:;(2)若,求直
4、线与平面所成角的正弦值15.如图,多面体中,平面平面,且. (1)设是线段上的点,求证;(2)求点到平面的距离.答案以及解析1.答案:B解析:如图,设为外接圆的圆心,为三棱锥外接球的球心。.设三棱锥外接球的半径为,则,解得,故三棱锥外接球的体积是.故选:B2.答案:A解析:设,取中点,连接。因为是的中点,所以,则为二面角的平面角,在直角三角形中,所以,所以在直角三角形中,所以,所以,所以三棱锥的外接球的半径为,所以三棱锥的外接球的体积为3.答案:B解析:在四面体中,和均是边长为1的等边三角形,四面体的四个顶点都在同一球面上,且是该球的直径,平面,四面体的体积为:故选:B.4.答案:B解析:平面
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2021秋八年级英语上册 Module 11 Way of life模块整合与拔高课件(新版)外研版.pptx
