《创新设计-课堂讲义》2016-2017学年高中数学(苏教版选修2-2)配套习题:第二章 推理与证明 2-2-2 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计-课堂讲义
- 资源描述:
-
1、2.2.2间接证明明目标、知重点1.了解反证法是间接证明的一种基本方法.2.理解反证法的思考过程,会用反证法证明数学问题1间接证明不是直接从原命题的条件逐步推得命题成立的证明方法称为间接证明2反证法从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题)3反证法步骤反证法的过程包括下面3个步骤:反设,归谬,存真4反证法常见的矛盾类型反证法的关键是在正确的推理下得出矛盾这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等情境导学王戎小时候,爱和小朋友在路上玩耍一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动,等到小朋友们
2、摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的”这就是著名的“道旁苦李”的故事王戎的论述,运用的方法即是本节课所要学的方法反证法探究点一反证法思考1通过情境导学得上述方法的一般模式是什么?答(1)假设原命题不成立(提出原命题的否定,即“李子苦”),(2)以此为条件,经过正确的推理,最后得出一个结论(“早被路人摘光了”),(3)判定该结论与事实(“树上结满李子”)矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法称为反证法思考2反证法证明的关键是经过推理论证,得出矛盾反证法引出的矛
3、盾有几种情况?答(1)与原题中的条件矛盾;(2)与定义、公理、定理、公式等矛盾;(3)与假设矛盾思考3反证法主要适用于什么情形?答要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形例1已知直线a,b和平面,如果a,b,且ab,求证:a.证明因为ab,所以经过直线a,b确定一个平面.因为a,而a,所以与是两个不同的平面因为b,且b,所以b.下面用反证法证明直线a与平面没有公共点假设直线a与平面有公共点P,如图所示,则Pb,即点P是直线a与b的公共点,这与ab矛盾所以a.反思与感悟数学中的
4、一些基础命题都是数学中我们经常用到的明显事实,它们的判定方法极少,宜用反证法证明正难则反是运用反证法的常见思路,即一个命题的结论如果难以直接证明时,可考虑用反证法跟踪训练 1如图,已知ab,a平面A.求证:直线b与平面必相交证明假设b与平面不相交,即b或b.若b,因为ba,a,所以a,这与aA相矛盾;如图所示,如果b,则a,b确定平面.显然与相交,设c,因为b,所以bc.又ab,从而ac,且a,c,则a,这与aA相矛盾由知,假设不成立,故直线b与平面必相交探究点二用反证法证明否定性命题例2求证:不是有理数证明假设是有理数于是,存在互质的正整数m,n,使得,从而有mn,因此m22n2,所以m为偶
5、数于是可设m2k(k是正整数),从而有4k22n2,即n22k2,所以n也为偶数这与m,n互质矛盾由上述矛盾可知假设错误,从而不是有理数反思与感悟当结论中含有“不”、“不是、“不可能”、“不存在”等否定形式的命题时,由于此类问题的反面比较具体,适于应用反证法跟踪训练2已知三个正数a,b,c成等比数列,但不成等差数列,求证:,不成等差数列证明假设,成等差数列,则2,即ac24b,而b2ac,即b,ac24,()20.即,从而abc,与a,b,c不成等差数列矛盾,故,不成等差数列探究点三含至多、至少、唯一型命题的证明例 3 函数f(x)在区间a,b上是增函数,那么方程f(x)0在区间a,b上至多有
6、一个实根证明假设方程f(x)0在区间a,b上至少有两个实根,设、为其中的两个实根因为 ,不妨设,又因为函数f(x)在a,b上是增函数,所以f()0,这与abc0矛盾,故a、b、c中至少有一个大于0.1证明“在ABC中至多有一个直角或钝角”,第一步应假设_答案三角形中至少有两个直角或钝角2用反证法证明“三角形中至少有一个内角不小于60”,应先假设这个三角形中_答案每一个内角都小于603用反证法证明“在同一平面内,若ac,bc,则ab”时,应假设_答案a与b相交4已知a是整数,a2是偶数,求证:a也是偶数证明(反证法)假设a不是偶数,即a是奇数设a2n1(nZ),则a24n24n1.4(n2n)是
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-482843.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
