高中数学课件:3.2 古典概型(2) 必修三.ppt
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学课件:3.2 古典概型2 必修三 高中数学 课件 3.2 古典 必修
- 资源描述:
-
1、1.基本事件的有关概念温故知新2.古典概型的特征:(1)等可能性(2)有限性3.古典概型概率公式A包含的基本事件个数mP(A)基本事件的总数n同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?解:(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,它总共出现的情况如下表所示:(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(3,6)(3,5)(3,4)(3,3)(3
2、,2)(3,1)(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)从表中可以看出同时掷两个骰子的结果共有36种。(4,1)(3,2)(2,3)(1,4)6543216543211号骰子2号骰子例题剖析1(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)(1,6)(1,5)(1,4
3、)(1,3)(1,2)(1,1)(4,1)(3,2)(2,3)(1,4)6543216543211号骰子2号骰子(2)在上面的结果中,向上的点数之和为5的结果有4种,分别为:(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,(1,4),(2,3),(3,2),(4,1)解:由题意得:同时掷两个骰子,含基本事件的总数有66=36设向上的点数之和是5为事件A,则事件A含基本事件有:(4,1),(3,2),(2,3),(1,4)共4个P(A)=4/36=1/9答:向上的点数之和是5的概率是1/9.因此,课本第127页例3的解题过程可表达为:(6,6)(6,5)
4、(6,4)(6,3)(6,2)(6,1)(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)(4,1)(3,2)(2,3)(1,4)6543216543211号骰子2号骰子变式一:一颗骰子连掷两次,和为4的概率?变式二:这样的游戏公平吗?小军和小民玩掷骰子游戏,他们约定:两颗骰子掷出去,如果朝上的两个数的和是5,那么小军获胜,如果朝上的两个数的和是4
5、,那么小民获胜。不公平!为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)6543216543211号骰子2号骰子(4,1)(3,2)诱思探究1使每个基本事件出现的可能性相等。思考:这两个解法都是利用古典概型的概
6、率计算公式得到的,为什么会有不结果呢?两种解法满足古典概型的要求吗?我们在用公式时一定要注意判断是否是古典概型如何判断是否为古典概型?第二种解法构造的21个基本事件不是等可能发生,因此不满足古典概型特征。某种饮料每箱装6听,如果其中有2听不合格,问质检人员随机抽出2听,检测出不合格产品的概率有多大?解一:4听合格产品依次编号为1、2、3、4,2听不合格产品依次编号为a、b,则:从6听中随机抽出2听,所有可能结果有:(1,2)、(1,3)、(1,4)、(1,a)、(1,b)、(2,3)、(2,4)、(2,a)、(2,b)、(3,4)、(3,a)、(3,b)、(4,a)、(4,b)、(a,b)共1
7、5个设检测出不合格产品为事件A,则事件A含基本事件有:(1,a)、(1,b)、(2,a)、(2,b)、(3,a)、(3,b)、(4,a)、(4,b)、(a,b)共9个P(A)=9/15=0.6答:检测出不合格产品的概率为0.6.例题剖析2某种饮料每箱装6听,如果其中有2听不合格,问质检人员随机抽出2听,检测出不合格产品的概率有多大?解二:4听合格产品依次编号为1、2、3、4,2听不合格产品依次编号为a、b,则:从6听中随机抽出2听,所有可能结果有:(1,2)、(1,3)、(1,4)、(1,a)、(1,b)、(2,3)、(2,4)、(2,a)、(2,b)、(3,4)、(3,a)、(3,b)、(4
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
