山东省泰安第二中学2019-2020学年高二数学下学期开学考试试题(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 泰安 第二 中学 2019 2020 学年 数学 下学 开学 考试 试题 解析
- 资源描述:
-
1、山东省泰安第二中学2019-2020学年高二数学下学期开学考试试题(含解析)第卷(选择题共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,则( )A. B. C. D. 【答案】D【解析】【分析】分别解对数不等式,一元二次不等式求出集合A,B,直接进行交集运算.【详解】因为,或,所以.故选:D【点睛】本题考查集合的交集运算,涉及对数不等式、一元二次不等式,属于基础题.2. 已知复数,则( )A. B. C. D. 【答案】B【解析】【分析】利用复数除法、加法运算,化简求得,再求得【详解】,故.故选:B【点睛】本小题主
2、要考查复数的除法运算、加法运算,考查复数的模,属于基础题.3. 小明的妈妈为小明煮了 个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件,事件,则 ( )A. B. C. D. 【答案】B【解析】【详解】由题意,P(A)=,P(AB)=,P(B|A)=,故选B4. “”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】根据对数函数的定义域及单调性,可得的关系,结合充分必要条件性质即可判断.【详解】若,根据对数函数的定义域及单调性可知,可得,因而具有充分关系;若,则,当时对数函数无意义,因而不具有必要性;综上可知“”是“
3、”充分不必要条件故选:A.【点睛】本题考查了充分必要条件的定义域判断,对数函数与图像性质的应用,属于基础题.5. 如图,表示三个开关,设在某段时间内它们正常工作的概率分别是0.9、0.8、0.7,那么该系统正常工作的概率是( )A. 0.994B. 0.686C. 0.504D. 0.496【答案】B【解析】【分析】由题中意思可知,当、元件至少有一个在工作,且元件在工作时,该系统正常公式,再利用独立事件的概率乘法公式可得出所求事件的概率【详解】由题意可知,该系统正常工作时,、元件至少有一个在工作,且元件在元件,当、元件至少有一个在工作时,其概率为,由独立事件的概率乘法公式可知,该系统正常工作的
4、概率为,故选B【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,在处理至少等问题时,可利用对立事件的概率来计算,考查计算能力,属于中等题6. 已知随机变量服从正态分布,若,则( )A. B. C. D. 【答案】C【解析】【分析】由题意可知曲线关于对称,利用曲线的对称性求.【详解】由题意可知,正态分布曲线关于对称, ,根据对称性可知,,.故选:C【点睛】本题考查正态分布在指定区间的概率,正态分布下两类常见的概率计算(1)利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线对称,及曲线与轴之间的面积为1.(2)利用原则求概率问题时,要注意把给出的区
5、间或范围与正态变量的进行对比联系,确定它们属于,中的哪一个.7. 某次战役中,狙击手A受命射击敌机,若要击落敌机,需命中机首2次或命中机中3次或命中机尾1次,已知A每次射击,命中机首、机中、机尾的概率分别为0.2、0.4、0.1,未命中敌机的概率为0.3,且各次射击相互独立若A至多射击两次,则他能击落敌机的概率为( )A. 0.23B. 0.2C. 0.16D. 0.1【答案】A【解析】每次射击,命中机首、机中、机尾的概率分别为,未命中敌机的概率为,且各次射击相互独立,若射击一次就击落敌机,则他击中利敌机的机尾,故概率为;若射击次就击落敌机,则他次都击中利敌机的机首,概率为;或者第一次没有击中
6、机尾、且第二次击中了机尾,概率为 ,若至多射击两次,则他能击落敌机的概率为 ,故选.8. 若函数 在区间 内单调递增,则实数 的取值范围是( )A. B. C. D. 【答案】D【解析】【分析】求出函数的导数,问题转化为a- ,而g(x)=在(,2)递增,求出g(x)的最大值,从而求出a的范围即可【详解】f(x)=+2ax,若f(x)在区间(,2)内存在单调递增区间,则f(x)0在x(,2)恒成立,而g(x)=在(,2)递增,故,故选D【点睛】本题考查函数的导数的应用,函数有解以及函数的最值的求法,可以用变量分离的方法求参数的范围,也考查转化思想以及计算能力二、多项选择题:本题共4小题,每小题
7、5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分.9. 一组数据,的平均值为7,方差为4,记,的平均值为a,方差为b,则( )A. B. C. D. 【答案】BD【解析】【分析】根据所给平均数与方差,可由随机变量均值与方差公式求得,进而求得平均值为a,方差为b.【详解】设,数据,的平均值为7,方差为4,即,由离散型随机变量均值公式可得所以,因而,的平均值为;由离散型随机变量的方差公式可得所以,因而,的方差为,故选:BD.【点睛】本题考查了离散型随机变量均值与方差公式的简单应用,属于基础题.10. 研究变量得到一组样本数据,进行回
8、归分析,以下说法正确的是( )A. 残差平方和越小的模型,拟合的效果越好;B. 用相关指数来刻画回归效果,越小说明拟合效果越好;C. 在回归直线方程中,当解释变量每增加1个单位时,预报变量平均增加0.2个单位;D. 若变量和之间的相关系数为,则变量和之间的负相关很强.【答案】ACD【解析】【分析】可用残差平方和判断模型的拟合效果,可判断A;由相关指数来刻画回归效果,越大说明拟合效果越好,可判断B;由线性回归直线的方程特点,可判断C;由相关系数的绝对值趋向于1,可判断D【详解】解:A可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,故A正确;B用相关指数来刻画回归效果,越大说
9、明拟合效果越好,故B错误;C在回归直线方程中,当解释变量每增加1个单位时,预报变量平均增加0.2个单位,故C正确;D若变量和之间的相关系数为,的绝对值趋向于1,则变量和之间的负相关很强,故D正确故选:ACD【点睛】本题考查命题真假判断,主要是线性回归直线的特点和线性相关性的强弱、相关指数和系数的大小和模型的拟合度,考查判断能力,属于基础题11. 已知的展开式中第5项与第7项的二项数系数相等,且展开式的各项系数之和为1024,则下列说法正确的是( )A. 展开式中奇数项的二项式系数和为256B. 展开式中第6项的系数最大C. 展开式中存在常数项D. 展开式中含项的系数为45【答案】BCD【解析】
10、【分析】由二项式的展开式中第5项与第7项的二项数系数相等可知,由展开式的各项系数之和为1024可得,则二项式为,易得该二项式展开式的二项式系数与系数相同,利用二项式系数的对称性判断A,B;根据通项判断C,D即可.【详解】由二项式的展开式中第5项与第7项的二项数系数相等可知,又展开式的各项系数之和为1024,即当时,所以,所以二项式为,则二项式系数和为,则奇数项的二项式系数和为,故A错误;由可知展开式共有11项,中间项的二项式系数最大,即第6项的二项式系数最大,因为与的系数均为1,则该二项式展开式的二项式系数与系数相同,所以第6项的系数最大,故B正确;若展开式中存在常数项,由通项可得,解得,故C
11、正确;由通项可得,解得,所以系数为,故D正确,故选: BCD【点睛】本题考查二项式的定理的应用,考查系数最大值的项,考查求指定项系数,考查运算能力.12. 已知函数y=f(x)在R上可导且f(0)=1,其导函数满足,对于函数,下列结论正确的是( )A. 函数g(x)在(1,+)上为单调递增函数B. x=1是函数g(x)的极小值点C. 函数g(x)至多有两个零点D. 当x0时,不等式 恒成立【答案】ABC【解析】【分析】对函数求导,利用可得的正负,即函数的单调性,判断出选项AB;讨论的符号,结合单调性得出函数的零点个数,判断出选项C;利用在的单调性和最值,判断出选项D【详解】函数,则,当时,故在
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-486393.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
