山东省济南外国语中学2021届高三数学11月月考试题.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 济南 外国语 中学 2021 届高三 数学 11 月月 考试题
- 资源描述:
-
1、山东省济南外国语中学2021届高三数学11月月考试题第I卷(选择题)一、单选题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,则AB,CD,2设为虚数单位,复数满足,则A1BC2D3若在是减函数,则的最大值是ABCD4已知圆的方程为,点在直线上,线段为圆的直径,则的最小值为()A2BC3D5我国古代数学名著算法统宗中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A1盏B3盏C5盏D9盏6在长方体中,与平面所成的角为,则
2、该长方体的体积为( )ABCD7已知是椭圆与双曲线的公共焦点,P是它们的一个公共点,且,线段的垂直平分线过,若椭圆的离心率为,双曲线的离心率为,则的最小值为( )AB3C6D8设函数,其中 ,若存在唯一的整数,使得,则的取值范围是( )ABCD二、多选题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,有选错的得0分,部分选对的得3分。9在数列中,若,(,为常数),则称为“等方差数列”下列对“等方差数列”的判断正确的是( )A若是等差数列,则是等方差数列B是等方差数列C若是等方差数列,则(,为常数)也是等方差数列D若既是等方差数列,又是等差数列,
3、则该数列为常数列10如图,在棱长均相等的四棱锥中, 为底面正方形的中心, ,分别为侧棱,的中点,有下列结论正确的有:( )A平面B平面平面C直线与直线所成角的大小为 D11针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的,女生喜欢抖音的人数占女生人数,若有的把握认为是否喜欢抖音和性别有关则调查人数中男生可能有( )人附表:附:ABCD12对于函数,下列说法正确的是( )A在处取得极大值B有两个不同的零点C D若在上恒成立,则第II卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分。13设,则的最小值
4、为_.14从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成_个没有重复数字的四位数.(用数字作答)15在平面直角坐标系中,已知的顶点,顶点在椭圆上,_16已知函数,其中e是自然数对数的底数,若,则实数a的取值范围是_四、解答题:本题共4小题,共70分。17(10分)ABC的内角的对边分别为,已知ABC的面积为(1)求;(2)若求ABC的周长.18(10分)已知数列满足:,(1)求,的值;(2)求数列的通项公式;(3)设,数列的前n项和,求证:19(10分)如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平
5、面所成角的正弦值.20(12分)2019年“非洲猪瘟”过后,全国生猪价格逐步上涨,某大型养猪企业,欲将达到养殖周期的生猪全部出售,根据去年的销售记录,得到销售生猪的重量的频率分布直方图(如图所示).(1)根据去年生猪重量的频率分布直方图,估计今年生猪出栏(达到养殖周期)时,生猪重量达不到270斤的概率(以频率代替概率);(2)若假设该企业今年达到养殖周期的生猪出栏量为5000头,生猪市场价格是8元/斤,试估计该企业本养殖周期的销售收入是多少万元;(3)若从本养殖周期的生猪中,任意选两头生猪,其重量达到270斤及以上的生猪数为随机变量,试求随机变量的分布列及方差.21(14分)设椭圆的右焦点为,
6、过的直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.22(14分)已知函数,其中.(1)当时,求的单调区间;(2)若存在,使得不等式成立,求的取值范围.参考答案1A【解析】【分析】利用一元二次不等式的解法以及对数函数的单调性,求出集合,然后进行交集的运算即可。【详解】,;,故选【点睛】本题主要考查区间表示集合的定义,一元二次不等式的解法,对数函数的定义域及单调性,以及交集的运算2B【解析】【分析】利用复数代数形式的乘除运算,再由复数的模的计算公式求解即可【详解】由,得,故选【点睛】本题主要考查复数代数形式的乘除运算以及复数的模的计算3A【解析】【分析】
7、【详解】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值.详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质: (1). (2)周期 (3)由 求对称轴, (4)由求增区间;由求减区间.4B【解析】【分析】将转化为,利用圆心到直线的距离求得的取值范围求得的最小值.【详解】.故选B.【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题.5B【解析】【分析】【详解】设塔顶的a1盏灯,由题意an是公比为2的等比数列,S7=381,解得a1=3故选B6C【解析】【分析】首先画出长方体,利用题中条件,得到,根据,求得,可以确定,
8、之后利用长方体的体积公式求出长方体的体积.【详解】在长方体中,连接,根据线面角的定义可知,因为,所以,从而求得,所以该长方体的体积为,故选C.【点睛】该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长就显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果.7C【解析】【分析】利用椭圆和双曲线的性质,用椭圆双曲线的焦距长轴长表示,再利用均值不等式得到答案【详解】设椭圆长轴,双曲线实轴,由题意可知:,又,两式相减,可得:, ,当且仅当时取等号,的最小值为6,故选:C【点睛】本
9、题考查了椭圆双曲线的性质,用椭圆双曲线的焦距长轴长表示是解题的关键,意在考查学生的计算能力8D【解析】【分析】设,问题转化为存在唯一的整数使得满足,求导可得出函数的极值,数形结合可得且,由此可得出实数的取值范围.【详解】设,由题意知,函数在直线下方的图象中只有一个点的横坐标为整数, ,当时,;当时,.所以,函数的最小值为.又,.直线恒过定点且斜率为,故且,解得,故选D.【点睛】本题考查导数与极值,涉及数形结合思想转化,属于中等题.9BCD【解析】【分析】根据定义以及举特殊数列来判断各选项中结论的正误.【详解】对于A选项,取,则不是常数,则不是等方差数列,A选项中的结论错误;对于B选项,为常数,
10、则是等方差数列,B选项中的结论正确;对于C选项,若是等方差数列,则存在常数,使得,则数列为等差数列,所以,则数列(,为常数)也是等方差数列,C选项中的结论正确;对于D选项,若数列为等差数列,设其公差为,则存在,使得,则,由于数列也为等方差数列,所以,存在实数,使得,则对任意的恒成立,则,得,此时,数列为常数列,D选项正确.故选BCD.【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题.10ABD【解析】【分析】选项A,利用线面平行的判定定理即可证明;选项B,先利用线面平行的判定定理证明CD平面OMN,再利用面面平
11、行的判定定理即可证明;选项C,平移直线,找到线面角,再计算;选项D,因为ONPD,所以只需证明PDPB,利用勾股定理证明即可.【详解】选项A,连接BD,显然O为BD的中点,又N为PB的中点,所以ON,由线面平行的判定定理可得,平面;选项B, 由,分别为侧棱,的中点,得MNAB,又底面为正方形,所以MNCD,由线面平行的判定定理可得,CD平面OMN,又选项A得平面,由面面平行的判定定理可得,平面平面;选项C,因为MNCD,所以 PDC为直线与直线所成的角,又因为所有棱长都相等,所以 PDC=,故直线与直线所成角的大小为;选项D,因底面为正方形,所以,又所有棱长都相等,所以,故,又ON,所以,故A
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
