《创新设计》2015高考数学(浙江专用理科)二轮选修模块 专题1 第2讲(含最新原创题及解析) WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新设计2015高考数学浙江专用,理科二轮选修模块 专题1 第2讲含最新原创题及解析 WORD版含解析 创新 设计 2015 高考 数学 浙江 专用 理科 二轮 选修 模块 专题
- 资源描述:
-
1、高考资源网() 您身边的高考专家重点难点突破(选修模块)专题一导数及其应用第2讲导数的综合应用(建议用时:70分钟)一、选择题1已知函数f(x)x32x23m,x0,),若f(x)50恒成立,则实数m的取值范围是() A.B.C(,2D(,2)解析f(x)x24x,由f(x)0,得x4或x0,a1,f(1).答案D3函数f(x)的定义域是R,f(0)2,对任意xR,f(x)f(x)1,则不等式exf(x)ex1的解集为()A.B.C.D.解析构造函数g(x)exf(x)ex,因为g(x)exf(x)exf(x)exexf(x)f(x)exexex0,所以g(x)exf(x)ex为R上的增函数又
2、因为g(0)e0f(0)e01,所以原不等式转化为g(x)g(0),解得x0.答案A4(2013新课标全国卷)已知函数f(x)x3ax2bxc,下列结论中错误的是()Ax0R,f(x0)0B函数yf(x)的图象是中心对称图形C若x0是f(x)的极小值点,则f(x)在区间(,x0)上单调递减D若x0是f(x)的极值点,则f(x0)0解析若c0,则有f(0)0,所以A正确函数f(x)的解析式可以通过配方的方法化为形如(xm)3n(xm)h的形式,通过平移函数图象,函数的解析式可以化为yx3nx的形式,这是一个奇函数,其图象关于坐标原点对称,故函数f(x)的图象是中心对称图形,所以B正确;由三次函数
3、的图象可知,若x0是f(x)的极小值点,则极大值点在x0的左侧,所以函数在区间(,x0 )单调递减是错误的,D正确选C.答案C5已知f(x)是定义在(0,) 上的非负可导函数,且满足xf(x)f(x)0,对任意的0ab,则必有()Aaf(b)bf(a)Bbf(a)af(b)Caf(a)f(b)Dbf(b)f(a)解析因为xf(x)f(x),f(x)0,所以0,则函数在(0,)上单调递减由于0ab,则,即af(b)bf(a)答案A6(2013辽宁卷)设函数f(x)满足x2f(x)2xf(x),f(2),则x0时,f(x)()A有极大值,无极小值B有极小值,无极大值C既有极大值又有极小值D既无极大
4、值也无极小值解析由x2f(x)2xf(x),得f(x),令g(x)ex2x2f(x),x0,则g(x)ex2x2f(x)4xf(x)ex2.令g(x)0,得x2.当x2时,g(x)0;0x2时,g(x)0,g(x)在x2时有最小值g(2)e28f(2)0,从而当x0时,f(x)0,则f(x)在(0,)上是增函数,所以函数f(x)无极大值,也无极小值答案D7(2013湖北卷)已知a为常数,函数f(x)x(ln xax)有两个极值点x1,x2(x10,f(x2)Bf(x1)0,f(x2)0,f(x2)Df(x1)解析f(x)ln x2ax1,依题意知f(x)0有两个不等实根x1,x2.即函数g(x
5、)ln x1与函数h(x)2ax有两个不同交点x1,x2,如图由直线yx是曲线g(x)ln x1的切线,可知,02a1,且0x11x2.a.由0x11,得f(x1)x1(ln x1ax1)0,当x1x0,当xx2时,f(x)f(1)a,故选D.答案D8(2013安徽卷)若函数f(x)x3ax2bxc有极值点x1,x2,且f(x1)x1,则关于x的方程3(f(x)22af(x)b0的不同实根个数是()A3B4C5D6解析因为函数f(x)x3ax2bxc有两个极值点x1,x2,可知关于导函数的方程f(x)3x22axb有两个不等的实根x1,x2,则方程3(f(x)22af(x)b0有两个不等的实根
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-487755.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2022二年级语文下册 第6单元 第15课 古诗二首《绝句》品读释疑课件 新人教版.ppt
