山东省济南市历城区济钢高级中学2019-2020学年高一数学下学期期中试题(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 济南市 城区 高级中学 2019 2020 学年 数学 学期 期中 试题 解析
- 资源描述:
-
1、山东省济南市历城区济钢高级中学2019-2020学年高一数学下学期期中试题(含解析)一单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i为虚数单位,复数z满足,则复数z的共轭复数等于( )A. 1-iB. -1-iC. 1+iD. -1+i【答案】B【解析】【分析】利用复数的运算法则解得,结合共轭复数的概念即可得结果.【详解】复数满足,复数的共轭复数等于,故选B.【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题2.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以
2、上(包括50岁)的人,用分层抽样的方法从中抽取20人,各年龄段分别抽取的人数为( )A. 7,5,8B. 9,5,6C. 7,5,9D. 8,5,7【答案】B【解析】【分析】分层抽样按比例分配,即可求出各年龄段分别抽取的人数.【详解】由于样本容量与总体中的个体数的比值为,故各年龄段抽取的人数依次为,.故选B【点睛】本题考查分层抽样方法,关键要理解分层抽样的原则,属于基础题.3.已知平面向量,是非零向量,|=2,(+2),则向量在向量方向上的投影为()A. 1B. -1C. 2D. -2【答案】B【解析】【分析】先根据向量垂直得到(+2),=0,化简得到=2,再根据投影的定义即可求出【详解】平面
3、向量,是非零向量,|=2,(+2),(+2),=0,即 即=2向量在向量方向上的投影为=1,故选B【点睛】本题主要考查向量投影的定义及求解的方法,公式与定义两者要灵活运用解答关键在于要求熟练应用公式4.如图,AB是圆的直径,PA垂直于圆所在的平面,C是圆上一点(不同于A、B)且PAAC,则二面角PBCA的大小为()A. B. C. D. 【答案】C【解析】由条件得:PABC,ACBC又PAACC,BC平面PAC,PCA为二面角PBCA的平面角在RtPAC中,由PAAC得PCA45,故选C点睛:二面角的寻找主要利用线面垂直,根据二面角定义得二面角的棱垂直于二面角的平面角所在平面.5.在正方体中,
4、为棱的中点,则异面直线与所成角的正切值为A. B. C. D. 【答案】C【解析】【分析】利用正方体中,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.【详解】在正方体中,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以,则故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:平移两直线中的一条或两条,到一个平面中;利用边角关系,找到(或构造)所求角所在的三角形;求出三边或三边比例关系,用余弦定理求角;(2)向量法:求两直线的方向向量;求两向量夹角的余弦;因为直线夹角为锐角,所以对应的余弦取绝对值即为直线所成角的余弦值.6.设中边上的中线为,点满足,则(
5、 )A. B. C. D. 【答案】A【解析】【分析】作出图形,利用、表示,然后利用平面向量减法的三角形法则可得出可得出结果.【详解】如下图所示:为的中点,则,故选:A.【点睛】本题考查利用基底表示向量,考查了平面向量减法和加法三角形法则的应用,考查计算能力,属于中等题.7.已知向量,是不平行于轴的单位向量,且,则( )A. B. C. D. 【答案】B【解析】【分析】设,根据题意列出关于、方程组,求出这两个未知数的值,即可得出向量的坐标.【详解】设,其中,则.由题意得,解得,即.故选:B.【点睛】本题考查向量坐标的求解,根据向量数量积和模建立方程组是解题的关键,考查方程思想的应用以及运算求解
6、能力,属于基础题.8.已知两直线mn,两平面,且m,n.下面有命题中正确的个数是( )若/,则有mn; 若mn,则有/;若m/n,则有; 若,则有m/n.A. 0B. 1C. 2D. 3【答案】C【解析】【分析】由条件可知,再判断结论;由条件判断是否成立;由条件可知,再判断结论;根据面面垂直的性质定理判断.【详解】若,则,则,所以正确;若,不能推出, 所以不能推出,所以不正确;若,则,又有,所以,所以正确;若,则或,当,不能推出,所以不正确.故选:C【点睛】本题考查点,线,面位置关系的判断,重点考查想象,推理能力,属于基础题型.二多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四
7、个选项中有多项符合题目要求.9.下列各式中结果为零向量的是( )A. B. C. D. 【答案】AD【解析】【分析】根据向量加法和减法逐一判断选项,得到正确答案.【详解】A.,所有A正确;B.,不正确;C.,不是零向量;D.,所有D正确.故选:AD【点睛】本题考查向量加减法,属于基础题型.10.(多选题)已知集合,其中i为虚数单位,则下列元素属于集合M的是( )A. B. C. D. 【答案】BC【解析】【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,.选项A中,;选项B中,;选项C中,;选项D中,.故选:BC.【点睛】此题考查
8、复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解.11.已知锐角,内角、的对边分别为,若,则边的可能取值为( )A. 2B. 3C. 4D. 5【答案】CD【解析】【分析】由于三角形的正弦定理和正弦函数的值域可得的范围,讨论,结合条件可得所求结论.【详解】在中,由可得,由于可得,即有若,则,即,为等边三角形成立;若可得,且,即即为,即有成立.故选:【点睛】本题考查正弦定理与三角函数有界性,考查计算能力,属于中等题型.12.将正方形ABCD沿对角线BD折成直二面角A-BD-C,下列结论正确的是( )A. ACBDB. ACD是等边三角形C. AB与平面BCD成角D. AB与CD所成
9、的角是60【答案】ABD【解析】【分析】首先画出几何体,由线面垂直的性质定理判断A是否正确;根据直二面角的条件计算的长度,判断是否是等边三角形;根据线面角的定义判断C;由异面直线所成的角转化为相交直线所成的角,取的中点,连结,转化为求或其补角.【详解】A.取的中点,连结,由条件可知,又,所有平面,平面,所有,所以A正确;B.设正方形边长为2,则,且,所有,所以是等边三角形,所以B正确;C.由条件可知平面,所以与平面所成的角为,所以C不正确;D.取的中点,连结,则,则所成的角是或其补角,由以上说明可知,,所以是等边三角形,所以,故AB与CD所成的角是60,所以D正确.综上可知:ABD正确.故选:
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-488726.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2020年最新西安租房合同范本(标准版).pdf
