广西柳州市2020届高三第一次模拟考试数学(文)试题 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广西柳州市2020届高三第一次模拟考试数学文试题 WORD版含解析 广西 柳州市 2020 届高三 第一次 模拟考试 数学 试题 WORD 解析
- 资源描述:
-
1、柳州市2020届高三第一次模拟考试卷文科数学(考试时间120分钟满分150分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合,则( )A. B. C. D. 【答案】A【解析】【分析】化简集合,按并集的定义,即可求解.【详解】,.故选:A.【点睛】本题考查集合间的运算,求解对数不等式是解题的关键,属于基础题.2.若复数满足,其中为虚数为单位,则=( )A. B. C. D. 【答案】A【解析】因为,所以,所以,故选A.考点:复数的概念与运算.3.为了解某地区的“微信健步走”活动情况,拟从该地区的人群中抽取部分人员进行调查,事先了
2、解到该地区老中、青三个年龄段人员的“微信健步走”活动情况有较大差异,而男女“微信健走”活动情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )A. 简单随机抽样B. 按性别分层抽样C. 按年龄段分层抽样D. 系统抽样【答案】C【解析】【分析】根据题意,结合分层抽样方法,即可得出结论.【详解】根据该地区老中、青三个年龄段人员的“微信健步走”活动情况有较大差异,而男女“微信健走”活动情况差异不大,最合理的抽样方法是按年龄段分层抽样,这种抽样分式,更具有代表性,比较合理.故选:C【点睛】本题考查抽样方法,要掌握三种抽样的区别以及适用的范围,属于基础题.4.如图为某几何体的三视图,则该几何体的外
3、接球的表面积为( )A. B. C. D. 【答案】B【解析】【分析】根据三视图还原直观图,其直观图为底面是正方形的四棱锥,将其拓展为正方体,转化为求正方体的外接球的表面积.【详解】由三视图可得,该几何体为底面是正方形,一条侧棱与底面垂直的四棱锥,以为顶点将其拓展为正方体,且正方体的边长为,则正方体的外接球为四棱锥的外接球,外接球直径为正方体的对角线,即,所以该几何体的外接球的表面积为.故选:B.【点睛】本题考查三视图与直观图的关系、多面体与球的“外接”问题,考查等价转化思想以及直观想象能力,属于基础题.5.已知,并且成等差数列,则的最小值为( )A. 2B. 4C. 5D. 9【答案】D【解
4、析】成等差数列,当且仅当a=2b即时“=“成立,本题选择D选项.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正各项均为正;二定积或和为定值;三相等等号能否取得”,若忽略了某个条件,就会出现错误6.函数在处有极值10,则点为()A. B. C. 或D. 不存在【答案】B【解析】【详解】试题分析:,则,解得或,当时,此时在定义域上为增函数,无极值,舍去.当,为极小值点,符合,故选B考点:1.用导数研究函数的极值;2.函数在某一点取极值的条件.【易错点睛】本题主要考查用导数研究函数的极值问题,要求掌握可导函数取得有极值的条件,是函数取得极值的必要不充分条件.求解之后要注意检验
5、,本题中,当时,此时在定义域上为增函数,无极值,不符合题意,舍去.本题容易错选A,认为两组解都符合,一定要注意检验.7.设、是三条不同的直线,、是三个不同的平面,给出下列四个命题:若,则;若,则;若,是两条异面直线,且,则;若,则.其中正确命题的序号是( )A. B. C. D. 【答案】A【解析】【分析】根据线面平行的性质定理以及空间中平行直线的传递性可判断出命题的正误;根据面面关系可判断出命题的正误;利用线面平行的性质定理以及直线与平面垂直的判定定理可判断出命题的正误;根据线面垂直的判定定理、面面垂直的判定定理可判断出命题的正误.【详解】对于命题,由直线与平面平行的性质定理可得,由平行线的
6、传递性可知,命题正确;对于命题,则平面与平面平行或相交,命题错误;对于命题,过直线作平面,使得,若,根据平行线的传递性可得,这与题意矛盾,又、,又,、,命题正确;对于命题,但、不一定垂直,则与不一定垂直,所以与也不一定垂直,命题错误.因此,正确的命题序号为.故选A.【点睛】本题考查线面关系、面面关系有关命题的判断,判断时要熟悉线面、面面平行与垂直的判定和性质定理,考查推理能力,属于中等题.8.某种产品的广告费支出与销售额之间有如下对应数据(单位:百万元),根据下表求出关于的线性回归方程为,则表中的值为( )A. B. C. D. 【答案】B【解析】【详解】根据规律知道回归直线一定过样本中心,故
7、得到,得到的值为.故答案为B.9.执行如图所示的程序框图,如果输入n3,则输出的S( )A. B. C. D. 【答案】B【解析】【分析】列出循环过程中与的数值,满足判断框的条件即可结束循环.【详解】判断前,第1次循环,第2次循环,第3次循环,此时,满足判断框的条件,结束循环,输出结果:故选:B【点睛】本题考查程序框图中的循环结构,考查裂项求和,难度较易.10.设函数,则,则()A. 在单调递增,其图象关于直线对称B. 在单调递增,其图象关于直线对称C. 在单调递减,其图象关于直线对称D. 在单调递减,其图象关于直线对称【答案】D【解析】,由得,再由,所以.所以y=f(x)在在单调递减,其图象
8、关于直线对称,故选D.11.若定义在上的偶函数满足,且时,则函数的零点个数是( )A. 2个B. 4个C. 6个D. 8个【答案】D【解析】【分析】根据已知可得是周期为2的偶函数,令,转化为求出图象与的图象交点的个数,画出函数图象即可求解.【详解】是定义在上的偶函数,且时,当时,又满足,所以是周期为2的偶函数,且,令,设,则为偶函数,所以的零点的个数为与在上交点个数的两倍,画出在图象,可得与在上交点个数为4个,所以零点为8个.故选:D.【点睛】本题考查函数的零点与函数交点间的关系,以及函数性质的应用,考查数形结合思想,属于中档题.12.已知双曲线的右顶点为,抛物线的焦点为,若在的渐近线上存在点
9、,使得,则的离心率的取值范围是( )A. B. C. D. 【答案】B【解析】【分析】由已知可得以为直径的圆与渐近线有公共点,得出的不等量关系,结合,即可求解.【详解】抛物线的焦点为,双曲线的右顶点为,在的渐近线上存在点,使得,不妨设渐近线方程为,则以为直径的圆与渐近线有公共点,即的中点到直线的距离,即.故选:B.【点睛】本题考查双曲线的简单几何性质,应用直线与圆的位置关系是解题的关键,考查计算求解能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分13.若,则=_【答案】【解析】分析:由二倍角公式求得,再由诱导公式得结论详解:由已知,故答案为点睛:三角函数恒等变形中,公式很多,如
10、诱导公式、同角关系,两角和与差的正弦(余弦、正切)公式、二倍角公式,先选用哪个公式后选用哪个公式在解题中尤其重要,但其中最重要的是“角”的变换,要分析出已知角与未知角之间的关系,通过这个关系都能选用恰当的公式14.一船以每小时的速度向东航行,船在处看到一个灯塔在北偏东,行驶后,船到达处,看到这个灯塔在北偏东,这时船与灯塔的距离为 【答案】【解析】【详解】依题意,作图如图,,在中,,设,根据正弦定理得:,即,,答:这时船与灯塔的距离为,故答案为15.已知圆C经过两点,圆心在轴上,则C的方程为_【答案】.【解析】【分析】由圆的几何性质得,圆心在的垂直平分线上,结合题意知,求出的垂直平分线方程,令,
11、可得圆心坐标,从而可得圆的半径,进而可得圆的方程.【详解】由圆几何性质得,圆心在的垂直平分线上,结合题意知,的垂直平分线为,令,得,故圆心坐标为,所以圆的半径,故圆的方程为.【点睛】本题主要考查圆的性质和圆的方程的求解,意在考查对基础知识的掌握与应用,属于基础题.16.在等腰梯形ABCD中,已知,点E和点F分别在线段BC和CD上,且则的值为 【答案】【解析】在等腰梯形ABCD中,由,得,所以.考点:平面向量的数量积.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤第1721题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答(一)必考题:共60分17.设正项等
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
