山东省济宁市嘉祥一中2020届高三数学第三次质量检测试题含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 济宁市 嘉祥 一中 2020 届高三 数学 第三次 质量 检测 试题 解析
- 资源描述:
-
1、山东省济宁市嘉祥一中2020届高三数学第三次质量检测试题(含解析)第卷(选择题 共60分)一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项符合题目要求1.已知集合,则( )A. B. C. D. 【答案】B【解析】【分析】计算,再计算交集得到答案【详解】,表示偶数,故.故选:.【点睛】本题考查了集合的交集,意在考查学生的计算能力.2.欧拉公式为,(虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”根据欧拉公式可知,表示的复数位于复平面中的( )
2、A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】计算,得到答案.【详解】根据题意,故,表示的复数在第一象限.故选:.【点睛】本题考查了复数的计算, 意在考查学生的计算能力和理解能力.3.已知不重合的平面 和直线 ,则“ ”的充分不必要条件是( )A. 内有无数条直线与平行B. 且C. 且D. 内的任何直线都与平行【答案】B【解析】【分析】根据充分不必要条件和直线和平面,平面和平面的位置关系,依次判断每个选项得到答案.【详解】A. 内有无数条直线与平行,则相交或,排除;B. 且,故,当,不能得到 且,满足;C. 且,则相交或,排除;D. 内的任何直线都与平行,故
3、,若,则内的任何直线都与平行,充要条件,排除.故选:.【点睛】本题考查了充分不必要条件和直线和平面,平面和平面的位置关系,意在考查学生的综合应用能力.4.已知角的终边经过点P(),则sin()=A. B. C. D. 【答案】A【解析】【详解】由题意可得三角函数的定义可知:,则:本题选择A选项.5.若x(0,1),alnx,b,celnx,则a,b,c的大小关系为()A. bcaB. cbaC. abcD. bac【答案】A【解析】【分析】利用指数函数、对数函数的单调性直接求解【详解】x(0,1),alnx0,b()lnx()01,0celnxe01,a,b,c的大小关系为bca故选A【点睛】
4、本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题6.函数的最小正周期是,则其图象向左平移个单位长度后得到的函数的一条对称轴是( )A. B. C. D. 【答案】D【解析】【分析】由三角函数的周期可得,由函数图像的变换可得, 平移后得到函数解析式为,再求其对称轴方程即可.【详解】解:函数的最小正周期是,则函数,经过平移后得到函数解析式为,由,得,当时,.故选D.【点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.7.“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律
5、将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B. C. D. 【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(), 数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.8.已知点是抛物线:的焦点,点为抛物线的
6、对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰好在以,为焦点的双曲线上,则双曲线的离心率为( )A. B. C. D. 【答案】D【解析】【分析】根据抛物线的性质,设出直线方程,代入抛物线方程,求得k的值,设出双曲线方程,求得2a丨AF2丨丨AF1丨(1)p,利用双曲线的离心率公式求得e【详解】直线F2A的直线方程为:ykx,F1(0,),F2(0,),代入抛物线C:x22py方程,整理得:x22pkx+p20,4k2p24p20,解得:k1,A(p,),设双曲线方程为:1,丨AF1丨p,丨AF2丨p,2a丨AF2丨丨AF1丨( 1)p,2cp,离心率e1,故选D【点睛】本题考查抛物线
7、及双曲线的方程及简单性质,考查转化思想,考查计算能力,属于中档题二、多项选择题:本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项符合题目要求.全部选对的得 5 分,部分选对的得 3 分,有选错的得 0 分.9.(多选题)下列说法中,正确的命题是( )A. 已知随机变量服从正态分布,则B. 以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则,的值分别是和0.3C. 已知两个变量具有线性相关关系,其回归直线方程为,若,则D. 若样本数据,的方差为2,则数据,的方差为16【答案】BC【解析】【分析】根据正态分布性质求即可判断A;根据方程变形即可确定,
8、的值,再判断B; 根据回归直线方程过样本中心,即可判断C;根据数据变化与方差变化关系判断D.【详解】因为随机变量服从正态分布,所以,即A错;,从而,即B正确;过, ,即C正确;因为样本数据,的方差为2,所以数据,的方差为,即D错误;故选:BC【点睛】本题考查正态分布、方差性质以及线性回归方程及其性质,考查基本分析求解能力,属基础题.10.甲、乙、丙三人在政治、历史、地理、物理、化学、生物、技术7门学科中任选3门若同学甲必选物理,则下列说法正确的是( )A. 甲、乙、丙三人至少一人选化学与全选化学是对立事件B. 甲的不同的选法种数为15C. 已知乙同学选了物理,乙同学选技术的概率是D. 乙、丙两
9、名同学都选物理的概率是【答案】BD【解析】【分析】根据对立事件的概念可判断A;直接根据组合的意义可判断B;乙同学选技术的概率是可判断 C;根据相互独立事件同时发生的概率可判断D.【详解】甲、乙、丙三人至少一人选化学与全不选化学是对立事件,故A错误;由于甲必选物理,故只需从剩下6门课中选两门即可,即种选法,故B正确;由于乙同学选了物理,乙同学选技术的概率是,故C错误;乙、丙两名同学各自选物理的概率均为,故乙、丙两名同学都选物理的概率是,故D正确;故选BD.【点睛】本题主要考查了对立事件的概念,事件概率的求法以及相互独立事件同时发生的概率,属于基础题.11.如图所示,在四棱锥中,底面是边长为的正方
10、形,是正三角形,为线段的中点,点为底面内的动点,则下列结论正确的是( )A. 若时,平面平面B. 若时,直线与平面所成的角的正弦值为C. 若直线和异面时,点不可能为底面的中心D. 若平面平面,且点为底面的中心时,【答案】AC【解析】【分析】推导出平面,结合面面垂直的判定定理可判断A选项的正误;设的中点为,连接、,证明出平面,找出直线与平面所成的角,并计算出该角的正弦值,可判断B选项的正误;利用反证法可判断C选项的正误;计算出线段和的长度,可判断D选项的正误.综合可得出结论.【详解】因为,所以平面,平面,所以平面平面,A项正确;设的中点为,连接、,则.平面平面,平面平面,平面.平面,设平面所成角
11、为,则,则,B项错误;连接,易知平面,由、确定的面即为平面,当直线和异面时,若点为底面的中心,则,又平面,则与共面,矛盾,C项正确;连接,平面,平面,、分别为、的中点,则,又,故,则,D项错误.故选:AC.【点睛】本题考查立体几何综合问题,涉及面面垂直的判断、线面角的计算以及异面直线的判断,考查推理能力与计算能力,属于中等题.12.已知数列满足给出下列四个命题,其中的真命题是( )A. 数列单调递增;B. 数列 单调递增;C. 数从某项以后单调递增;D. 数列从某项以后单调递增.【答案】BCD【解析】【分析】计算得到,A错误,化简,B正确,C正确,D正确,得到答案.【详解】因为,所以,当时,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
