分享
分享赚钱 收藏 举报 版权申诉 / 17

类型广西玉林市田家炳中学2020-2021学年高二数学上学期质量检测试题.doc

  • 上传人:a****
  • 文档编号:493819
  • 上传时间:2025-12-08
  • 格式:DOC
  • 页数:17
  • 大小:2.12MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    广西 玉林市 田家 中学 2020 2021 学年 数学 上学 质量 检测 试题
    资源描述:

    1、广西玉林市田家炳中学2020-2021学年高二数学上学期质量检测试题一、单选题1在四面体中,为中点,若,则( )A B CD2已知空间向量,若与垂直,则等于( )ABCD3在长方体中,则异面直线与所成角的余弦值为( ) ABCD4直线x+(1+m)y=2-m和直线mx+2y+8=0平行,则m的值为( )A1BC1或D5已知圆内一点P(2,1),则过P点的最短弦所在的直线方程是( )A B C D6.对任意实数k,圆:与直线:的位置关系是( )A.相交 B.相切 C.相离 D.不确定7点在曲线上运动,且的最大值为,若,则的最小值为( )A1B2C3D48在正四面体(所有棱长均相等的三棱锥)中,点

    2、在棱上,满足,点为线段上的动点.设直线与平面所成的角为,则( )A存在某个位置,使得 B存在某个位置,使得C存在某个位置,使得平面平面 D存在某个位置,使得二、多选题9下面四个结论正确的是( )A向量,若,则B若空间四个点,则,三点共线C已知向量,若,则为钝角D任意向量,满足10如图,一个结晶体的形状为平行六面体,其中,以顶点A为端点的三条棱长都相等,且它们彼此的夹角都是60,下列说法中正确的是( )ABC向量与的夹角是60D与AC所成角的余弦值为11(多选题)对于,下列说法正确的是( )A可看作点与点的距离 B可看作点与点的距离C可看作点与点的距离 D可看作点与点的距离12已知直线的一个方向

    3、向量为,且经过点,则下列结论中正确的是( )A的倾斜角等于B在轴上的截距等于C与直线垂直D上存在与原点距离等于1的点三、填空题13如图,在正四棱柱中,底面边长为2,直线与平面所成角的正弦值为,则正四棱柱的高为_14如图,已知平面平面,且,则_.15两圆和的公共弦长为_16在中,B=,点为内切圆的圆心,过点作动直线与线段,都相交,将沿动直线翻折,使翻折后的点在平面上的射影落在直线上,点在直线上的射影为,则的最小值为_四、解答题17如图,在直三棱柱中,点、分别为和的中点.(1)证明:平面;(2)若,求二面角的余弦值.18如图,四边形为正方形,平面,点,分别为,的中点()证明:平面;()求点到平面的

    4、距离19已知圆的圆心在直线上,且圆经过点.(1)求圆的标准方程;(2)直线过点且与圆相交,所得弦长为4,求直线的方程.20已知平面内两点(1)求的中垂线方程;(2)求过点且与直线平行的直线的方程;(3)一束光线从点射向(2)中的直线,若反射光线过点,求反射光线所在的直线方程21已知,如图四棱锥中,底面为菱形,平面,E,M分别是BC,PD中点,点F在棱PC上移动.(1)证明无论点F在PC上如何移动,都有平面平面;(2)当直线AF与平面PCD所成的角最大时,求二面角的余弦值.22在平面直角坐标系中,已知圆的圆心在轴右侧,原点和点都在圆上,且圆在轴上截得的线段长度为3(1)求圆的方程;(2)若,为圆

    5、上两点,若四边形的对角线的方程为,求四边形面积的最大值;(3)过点作两条相异直线分别与圆相交于,两点,若直线,的斜率分别为,且,试判断直线的斜率是否为定值,并说明理由答案1D解:根据题意得,2A解:由空间向量,若与垂直,则,即,即,即,即,即,3C详解:以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,,异面直线与所成角的余弦值为4A解:直线和直线平行,解得或,当时,两直线重合5B由题意可知,当过圆心且过点时所得弦为直径,当与这条直径垂直时所得弦长最短,圆心为,,则由两点间斜率公式可得,与垂直的直线斜率为, 则由点斜式可得过点的直线方程为,化简可得, 6A解:直线的方程,

    6、整理得,直线过定点,圆的方程为,整理得圆的圆心,半径,圆心到定点的距离为:直线与圆的位置关系是相交7A曲线可化为,表示圆心为,半径为的圆,可以看作点到点的距离的平方,圆上一点到的距离的最大值为,即点是直线与圆的离点最远的交点,直线的方程为,由,解得或(舍去),当时,取得最大值,且,当且仅当,且,即时等号成立8C如下图所示,设正四面体的底面中心为点,连接,则平面,以点为坐标原点,、所在直线分别为、轴建立空间直角坐标系,设正四面体的棱长为,则、,设,其中,对于A选项,若存在某个位置使得,解得,不合乎题意,A选项错误;对于B选项,若存在某个位置使得,该方程无解,B选项错误;对于C选项,设平面的一个法

    7、向量为,由,取,得,设平面的一个法向量为,由,取,则,若存在某个位置,使得平面平面,则,解得,合乎题意,C选项正确;对于D选项,设平面的一个法向量为,由,令,则,若存在某个位置,使得,即,整理得,该方程无解,D选项错误.9AB由向量垂直的充要条件可得A正确;,即,三点共线,故B正确;当时,两个向量共线,夹角为,故C错误;由于向量的数量积运算不满足结合律,故D错误10AB以顶点A为端点的三条棱长都相等, 它们彼此的夹角都是60,可设棱长为1,则 而, A正确. =0,B正确.向量,显然 为等边三角形,则.向量与的夹角是 ,向量与的夹角是,则C不正确又, 则, ,D不正确.11BCD由题意,可得,

    8、可看作点与点的距离,可看作点与点的距离,可看作点与点的距离,故选项A不正确,12CD解:直线的一个方向向量为,直线的斜率为,设直线的倾斜角为(),则,A错误;经过点,直线的方程为,令,则,在轴上的截距为,B错误;直线的斜率为,直线的斜率为,与直线垂直,C正确;原点到直线的距离为,上存在与原点距离等于1的点,D正确,134解:以为坐标原点,所在直线分别为轴,轴,轴建立如图所示的空间直角坐标系,设,则,故,设平面的一个法向量为,则,可取,故,又直线与平面所成角的正弦值为,解得1413平面平面,,,15解:即圆心为,半径;得,即两圆公共弦方程为,圆心到直线的距离公共弦长为1616如图所示:,平面,三

    9、点共线,以分别为轴建立平面直角坐标系,则,设直线的方程为,由题意直线与线段都相交,当时,直线的方程为令,求得,又当时,点坐标为,综上.由点到直线的距离公式课计算得 即最小值为.17(1)详见解析;(2)(1)如图,作线段中点,连接、,是线段中点,点为线段的中点,是线段中点,点为线段的中点,三棱柱是直三棱柱,直线平面,直线平面,平面平面,平面,平面.(2)如图,以为原点、为轴、为轴、为轴构建空间直角坐标系,则,设是平面的法向量,则,即,令,则,设是平面的法向量,则,即,令,则,令二面角为,则,故结合图像易知,二面角的余弦值为.18()见解析;().试题解析:()证明:取点是的中点,连接,则,且,

    10、且,且,四边形为平行四边形,平面()解:由()知平面,点到平面的距离与到平面的距离是相等的,故转化为求点到平面的距离,设为利用等体积法:,即,19(1);(2)或.(1)设圆心为,则应在的中垂线上,其方程为,由,即圆心坐标为又半径,故圆的方程为.(2)点在圆上,且弦长为,故应有两条直线.圆心到直线距离.当直线的斜率不存在时,直线的方程为,此时圆心到直线距离为1,符合题意.当直线的斜率存在时,设为,直线方程为整理为,则圆心到直线距离为,解得,直线方程为,综上,所求直线方程为或.20(1);(2);(3).(1),的中点坐标为,的中垂线斜率为,由点斜式可得,的中垂线方程为;(2)由点斜式,直线的方

    11、程,(3)设关于直线的对称点, 解得,由点斜式可得,整理得反射光线所在的直线方程为.21(1)见解析;(2)(1)连接AC.底面ABCD为菱形,是正三角形,是BC中点,又,又平面,平面,又,平面,又平面,平面平面.(2)由(1)知,AE,AD,AP两两垂直,以AE,AD,AP所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,易知:,而且,设平面PCD的法向量,取,.根据题意,线面角当时,最大,此时F为PC的中点,即,.设平面AEF的法向量为,平面AEM的法向量为,解得,同理可得,二面角的平面角的余弦值为.22(1);(2);(3)是定值,理由详见解析(1)由已知圆过,三点设圆方程为,则有,解得圆方程为,即(2)由(1)可知,半径,则到距离,当且仅当时取等号,由解得;由,在两侧,到距离,到距离,四边形的面积,时,四边形面积最大为(3)由题意可设由可得,设,则,同理,为定值

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:广西玉林市田家炳中学2020-2021学年高二数学上学期质量检测试题.doc
    链接地址:https://www.ketangku.com/wenku/file-493819.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1