2021年高考数学三轮冲刺训练 解三角形(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021年高考数学三轮冲刺训练 解三角形含解析 2021 年高 数学 三轮 冲刺 训练 三角形 解析
- 资源描述:
-
1、解三角形高考对正弦定理和余弦定理的考查较为灵活,题型多变,往往以小题的形式独立考查正弦定理或余弦定理,以解答题的形式综合考查定理的综合应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等或以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等1.正、余弦定理在ABC中,若角A,B,C所对的边分别是a,b,c,R为ABC外接圆半径,则定理正弦定理余弦定理公式2Ra2b2c22bccos A;b2c2a22cacos B;c2a2b22abcos C常见变形(1)a2Rsin A,b2Rsin B,c2Rsin C;(2)sin
2、 A,sin B,sin C;(3)abcsin Asin Bsin C;(4)asin Bbsin A,bsin Ccsin B,asin Ccsin Acos A;cos B;cos C2.SABCabsin Cbcsin Aacsin B(abc)r(r是三角形内切圆的半径),并可由此计算R,r. 3.在ABC中,已知a,b和A时,解的情况如下: A为锐角A为钝角或直角图形关系式absin bsin A aab ab解的个数一解两解一解一解无解4.判定三角形形状的两种常用途径(1)化角为边:利用正弦定理、余弦定理化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(2)化边为角:通
3、过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;一、利用正弦定理可解决两类问题基本类型一般解法已知两角及其中一角的对边,如A,B,a由ABC180,求出C;根据正弦定理,得及,求出边b,c已知两边及其中一边所对的角,如a,b,A根据正弦定理,经讨论求B;求出B后,由ABC180,求出C;再根据正弦定理,求出边c.提醒也可以根据余弦定理,列出以边c为元的一元二次方程c2(2bcos A)c(b2a2)0,根据一元二次方程的解法,求边c,然后应用正弦定理或余弦定理,求出B,C二、利用余弦定理可解决两类问题已知两边和它们的夹角,如a,b,C根据余弦定理c2a2b22ab
4、cos C,求出边c;根据cos A,求出A;根据B180(AC),求出B.求出第三边后,也可用正弦定理求角,这样往往可以使计算简便,应用正弦定理求角时,为了避开讨论(因为正弦函数在区间(0,)上是不单调的),应先求较小边所对的角,它必是锐角已知三边可以连续用余弦定理求出两角,常常是分别求较小两边所对的角,再由ABC180,求出第三个角;由余弦定理求出一个角后,也可以根据正弦定理求出第二个角,但仍然是先求较小边所对的角.1、在ABC中,cosC=,AC=4,BC=3,则cosB=ABCD【答案】A【解析】在中,根据余弦定理:,可得 ,即,由,故.故选:A2、在中,则ABC D【答案】A【解析】
5、因为所以,故选A.3、的内角的对边分别为,若的面积为,则ABCD【答案】C【解析】由题可知,所以,由余弦定理,得,因为,所以,故选C.4、如图,在三棱锥PABC的平面展开图中,AC=1,ABAC,ABAD,CAE=30,则cosFCB=_.【答案】【解析】,由勾股定理得,同理得,在中,由余弦定理得,在中,由余弦定理得.故答案为:.5、的内角的对边分别为.若,则的面积为_【答案】【解析】由余弦定理得,所以,即,解得(舍去),所以,6、中,sin2Asin2Bsin2C= sinBsinC(1)求A;(2)若BC=3,求周长的最大值【解析】(1)由正弦定理和已知条件得,由余弦定理得,由,得.因为,
6、所以.(2)由正弦定理及(1)得,从而,.故.又,所以当时,周长取得最大值.7、在ABC中,角A,B,C的对边分别为a,b,c,已知(1)求的值;(2)在边BC上取一点D,使得,求的值【解析】(1)在中,因为,由余弦定理,得,所以.在中,由正弦定理,得,所以(2)在中,因为,所以为钝角,而,所以为锐角.故则.因为,所以,.从而.8、在中,角所对的边分别为已知()求角的大小;()求的值;()求的值【解析】()在中,由余弦定理及,有又因为,所以()在中,由正弦定理及,可得()由及,可得,进而所以,9、在锐角ABC中,角A,B,C所对的边分别为a,b,C已知()求角B的大小;()求cosA+cosB
7、+cosC的取值范围【解析】()由正弦定理得,故,由题意得.()由得,由是锐角三角形得.由得.故的取值范围是.10、的内角A,B,C的对边分别为a,b,c,设(1)求A;(2)若,求sinC【答案】(1);(2).【解析】(1)由已知得,故由正弦定理得由余弦定理得因为,所以(2)由(1)知,由题设及正弦定理得,即,可得由于,所以,故11、ABC的内角A,B,C的对边分别为a,b,c,已知(1)求B;(2)若ABC为锐角三角形,且c=1,求ABC面积的取值范围【答案】(1)B=60;(2).【解析】(1)由题设及正弦定理得因为sinA0,所以由,可得,故因为,故,因此B=60(2)由题设及(1)
8、知ABC的面积由正弦定理得由于ABC为锐角三角形,故0A90,0C90,由(1)知A+C=120,所以30C90,故,从而因此,ABC面积的取值范围是12、在ABC中,a=3,bc=2,cosB=(1)求b,c的值;(2)求sin(BC)的值【答案】(1),;(2).【解析】(1)由余弦定理,得.因为,所以.解得.所以.(2)由得.由正弦定理得.在中,B是钝角,所以C为锐角.所以.所以.13、在中,内角所对的边分别为已知,(1)求的值;(2)求的值【答案】(1);(2).【解析】(1)在中,由正弦定理,得,又由,得,即又因为,得到,由余弦定理可得(2)由(1)可得,从而,故14、在中,再从条件
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2022年高二语文 晨读晚练 第一周 人生憧憬-战争和平课件.ppt
