广西防城港市2021届高三数学12月模拟考试试题 理(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广西防城港市2021届高三数学12月模拟考试试题 理含解析 广西 防城港市 2021 届高三 数学 12 模拟考试 试题 解析
- 资源描述:
-
1、广西防城港市2021届高三数学12月模拟考试试题 理(含解析)一、单选题1. 已知集合,则( )A. B. C. D. 【答案】D【解析】分析】先求出集合,再求交集即可.【详解】由已知,又,则.故选:D.【点睛】本题考查集合交集的运算,是基础题.2. 已知,则复数( )A. B. 2C. D. 【答案】A【解析】【分析】由题意结合复数的运算法则和复数的性质整理计算即可求得最终结果.【详解】由题意可得:,则.本题选择A选项.【点睛】本题主要考查复数的运算法则,复数的模的计算等知识,意在考查学生的转化能力和计算求解能力.3. 已知,则cos 2( )A. B. C. D. 【答案】B【解析】【分析
2、】由题意首先求得的值,然后利用二倍角公式整理计算即可求得最终结果.【详解】由题意结合诱导公式可得:,.故选:B4. 某个几何体的三视图如图所示,则该几何体的体积为( )A. B. C. D. 【答案】C【解析】【分析】根据三视图可知几何体为三棱锥,根据三棱锥体积公式直接求得结果.【详解】由三视图可知,几何体为高为的三棱锥三棱锥体积:本题正确选项:【点睛】本题考查棱锥体积的求解,关键是能够根据三视图确定几何体的底面积和高,属于基础题.5. 已知圆和两点,若圆上存在点,使得,则的最大值为( )A. B. C. D. 【答案】D【解析】【分析】将原问题转化为圆与圆的位置关系,据此求解实数a的取值范围
3、即可,据此确定a的最大值即可.【详解】若点P满足,则点P在以AB为直径的圆上,据此可知,满足题意时,圆与圆有公共点,两圆的圆心距:,两圆的半径,满足题意时应有:,即:,求解关于实数a的不等式可得:,则的最大值为.本题选择D选项.【点睛】本题主要考查圆与圆的位置关系,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.6. 已知的展开式中,二项式系数和为,各项系数和为,则( )A. B. C. D. 【答案】A【解析】【分析】由题意首先求得n的值,然后求解m的值即可.【详解】展开式二项式系数和为,则:,故.则各项系数和为,据此可得:.本题选择A选项.【点睛】本题主要考查二项式系数与各
4、项系数和的含义与应用等知识,意在考查学生的转化能力和计算求解能力.7. 函数的图象可能是( )A. B. C. D. 【答案】A【解析】【分析】由题意结合函数的解析式排除错误选项即可确定函数的图象.【详解】函数的定义域关于坐标原点对称,且由函数的解析式可知:,则函数为奇函数,其图象关于坐标原点对称,选项CD错误;当时,则,当时,单调递减,当时,单调递增,即函数在区间内先单调递减,再单调递增,据此可排除B选项,本题选择A选项.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势(3)从函数的奇偶
5、性,判断图象的对称性(4)从函数的特征点,排除不合要求的图象利用上述方法排除、筛选选项8. 已知随机变量服从正态分布,且,则( )A. B. C. D. 【答案】C【解析】分析】由题意结合正态分布的对称性得到关于a的方程,解方程即可求得实数a的值.【详解】随机变量服从正态分布,则正态分布图象关于直线对称,结合有,解得:.本题选择C选项.【点睛】关于正态曲线在某个区间内取值的概率求法:熟记P(X),P(2X2),P(3X3)的值充分利用正态曲线的对称性和曲线与x轴之间面积为1.9. 已知的三边满足条件,则( )A. B. C. D. 【答案】D【解析】【分析】由题意首先求得的值,然后确定的大小即
6、可.【详解】由可得:,则,据此可得.本题选择D选项.【点睛】本题主要考查余弦定理及其应用,意在考查学生的转化能力和计算求解能力.10. 已知为的一个对称中心,则的对称轴可能为( )A. B. C. D. 【答案】B【解析】【分析】由题意首先确定的值,然后求解函数的对称轴即可.【详解】由题意可知,当时,据此可得:,令可得,则函数的解析式为,函数的对称轴满足:,解得:,令可知函数一条对称轴为,且很明显选项ACD不是函数的对称轴.本题选择B选项.【点睛】本题主要考查三角函数解析式的求解,三角函数对称轴方程的求解等知识,意在考查学生的转化能力和计算求解能力.11. 已知双曲线的左、右焦点分别为、,过作
7、垂直于实轴的弦,若,则的离心率为( )A. B. C. D. 【答案】C【解析】【分析】首先根据已知条件建立等量关系,进一步利用通径和焦距间的等量求出双曲线的离心率【详解】解:双曲线的左右焦点分别为、,过作垂直于实轴的弦,若,则:为等腰直角三角形由于通径,则:,解得:,所以:,解得:;由于e1,所以:,故选:C【点睛】本题考查通径在求离心率中的应用,等腰直角三角形的性质的应用属于基础题型12. 已知函数在恰有两个零点,则实数 的取值范围是( )A. B. C. D. 【答案】D【解析】【分析】首先分析0不是函数的零点然后利用导数求出时函数有零点的的范围,然后对分类并分析即可求得在恰有两个零点的
8、实数的取值范围【详解】解:当时,故0不是函数的零点;当时,等价于令,则当时,当时,当时,即,当时,在上有两个零点,则在无零点,则,;当或时,在上有一个零点,故在上需要有一个零点,此时不合题意;当时,在上无零点,故在上需要有两个零点,则综上,实数的取值范围是故选:【点睛】本题考查函数零点的判定,考查分段函数的应用,训练了利用导数求最值,属于难题二、填空题13. 已知向量,若与垂直,则实数_【答案】-1【解析】【分析】由题意结合向量垂直的充分必要条件得到关于k的方程,解方程即可求得实数k的值.【详解】由平面向量的坐标运算可得:,与垂直,则,即:,解得:.【点睛】本题主要考查向量的坐标运算,向量垂直
9、的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.14. 若变量、满足约束条件,则的最大值为_【答案】8【解析】【分析】首先画出可行域,然后确定目标函数的最大值即可.【详解】绘制不等式组表示的可行域如图所示,结合目标函数的几何意义可得目标函数在点处取得最大值,其最大值为:.【点睛】求线性目标函数zaxby(ab0)的最值,当b0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.15. 在三棱锥中,两两相互垂直,则此三棱锥内切球的半径为_【答案】或【解析】【分析】首先求得棱锥的
10、表面积,然后利用等体积法求解三棱锥的内切球半径即可.【详解】由题意可知,三棱锥的三个面是直角边长为1的等腰直角三角形,一个面是边长为的等边三角形,则三棱锥的表面积为:,设三棱锥的内切球半径为,利用等体积法可知:,即:,解得:,即.【点睛】本题主要考查三棱锥的空间结构特征,棱锥内切球半径的计算,等体积法的应用等知识,意在考查学生的转化能力和计算求解能力.16. 已知抛物线C:y2x,过C的焦点的直线与C交于A,B两点弦AB长为2,则线段AB的中垂线与x轴交点的横坐标为_【答案】【解析】【分析】先设出直线,再联立抛物线方程,由抛物线定义表示出焦点弦的弦长,列方程求出斜率,求解出中点坐标,写出AB的
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
