分享
分享赚钱 收藏 举报 版权申诉 / 9

类型山东省烟台市芝罘区2015_2016高三数学专题复习函数1抽象函数及题型.doc

  • 上传人:a****
  • 文档编号:501084
  • 上传时间:2025-12-09
  • 格式:DOC
  • 页数:9
  • 大小:423KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    山东省 烟台市 芝罘区 2015 _2016 数学 专题 复习 函数 抽象 题型
    资源描述:

    1、烟台芝罘区数学2015-2016高三专题复习-函数(1)抽象函数及题型 无明确解析式,解的有关问题,记为抽象函数问题。挺行总结如下1.判断函数的奇偶性例1 已知,对一切实数、都成立,且, 求证:为偶函数。证明:令=0, 则已知等式变为在中令=0则2=2 0=1为偶函数。2.求参数的取值范围例2:奇函数在定义域(-1,1)内递减,求满足的实数的取值范围。解:由得,为函数,又在(-1,1)内递减,3.解不定式 例3:如果=对任意的有,比较的大小解:对任意有=2为抛物线=的对称轴又其开口向上(2)最小,(1)=(3)在2,)上,为增函数(3)(4),(2)(1)(4)方法总结:抽象函数常见考点题型解

    2、法综述 1、定义域问题例1. 已知函数的定义域是1,2,求f(x)的定义域。解:的定义域是1,2,是指,所以中的满足从而函数f(x)的定义域是1,4例2. 已知函数的定义域是,求函数的定义域。解:的定义域是,意思是凡被f作用的对象都在中,由此可得所以函数的定义域是2、求值问题例3. 已知定义域为的函数f(x),同时满足下列条件:;,求f(3),f(9)的值。解:取, 得 因为,所以又取, 得3、值域问题例4. 设函数f(x)定义于实数集上,对于任意实数x、y,总成立,且存在,使得,求函数的值域。解:令,得,即有或。若,则,对任意均成立,这与存在实数,使得成立矛盾,故,必有。由于对任意均成立,因

    3、此,对任意,有下面来证明,对任意设存在,使得,则这与上面已证的矛盾,因此,对任意所以4、解析式问题例5. 设对满足的所有实数x,函数满足,求f(x)的解析式。解:在 中以代换其中x,得:再在(1)中以代换x,得化简得:5、单调性问题例6. 设f(x)定义于实数集上,当时,且对于任意实数x、y,有,求证:在R上为增函数。证明:在中取,得若,令,则,与矛盾所以,即有当时,;当时,而所以又当时,所以对任意,恒有设,则所以所以在R上为增函数。6、奇偶性问题例7. 已知函数对任意不等于零的实数都有,试判断函数f(x)的奇偶性。解:取得:,所以又取得:,所以再取则,即因为为非零函数,所以为偶函数。7、对称

    4、性问题例8. 已知函数满足,求的值。解:已知式即在对称关系式中取,所以函数的图象关于点(0,2002)对称。根据原函数与其反函数的关系,知函数的图象关于点(2002,0)对称。所以将上式中的x用代换,得评析:这是同一个函数图象关于点成中心对称问题,在解题中使用了下述命题:设a、b均为常数,函数对一切实数x都满足,则函数的图象关于点(a,b)成中心对称图形。针对性课堂练习1、线性函数型抽象函数1)已知函数f(x)对任意实数x,y,均有f(xy)f(x)f(y),且当x0时,f(x)0,f(1)2,求f(x)在区间2,1上的值域。2)已知函数f(x)对任意,满足条件f(x)f(y)2 + f(xy

    5、),且当x0时,f(x)2,f(3)5,求不等式的解。 2、指数函数型抽象函数3)设函数f(x)的定义域是(,),满足条件:存在,使得,对任何x和y,成立。求:(1)f(0); (2)对任意值x,判断f(x)值的正负。4)是否存在函数f(x),使下列三个条件:f(x)0,x N;f(2)4。同时成立?若存在,求出f(x)的解析式,如不存在,说明理由。3、对数函数型抽象函数对数函数型抽象函数,即由对数函数抽象而得到的函数。5)设f(x)是定义在(0,)上的单调增函数,满足,求:(1)f(1);(2)若f(x)f(x8)2,求x的取值范围。6)设函数yf(x)的反函数是yg(x)。如果f(ab)f

    6、(a)f(b),那么g(ab)g(a)g(b)是否正确,试说明理由。分析: 由题设条件可猜测yf(x)是对数函数的抽象函数,又yf(x)的反函数是yg(x),yg(x)必为指数函数的抽象函数,于是猜想g(ab)g(a)g(b)正确。4、三角函数型抽象函数三角函数型抽象函数即由三角函数抽象而得到的函数。7)己知函数f(x)的定义域关于原点对称,且满足以下三条件:当是定义域中的数时,有;f(a)1(a0,a是定义域中的一个数);当0x2a时,f(x)0。试问:(1)f(x)的奇偶性如何?说明理由。(2)在(0,4a)上,f(x)的单调性如何?说明理由。5、幂函数型抽象函数幂函数型抽象函数,即由幂函

    7、数抽象而得到的函数。 8)已知函数f(x)对任意实数x、y都有f(xy)f(x)f(y),且f(1)1,f(27)9,当时,。(1)判断f(x)的奇偶性;(2)判断f(x)在0,)上的单调性,并给出证明;(3)若,求a的取值范围。针对性课堂练习答案1)答案:由题设可知,函数f(x)是的抽象函数,因此求函数f(x)的值域,关键在于研究它的单调性。解:设,当,即,f(x)为增函数。在条件中,令yx,则,再令xy0,则f(0)2 f(0), f(0)0,故f(x)f(x),f(x)为奇函数,f(1)f(1)2,又f(2)2 f(1)4, f(x)的值域为4,2。2)答案:由题设条件可猜测:f(x)是

    8、yx2的抽象函数,且f(x)为单调增函数,如果这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。 解:设,当,则, 即,f(x)为单调增函数。 , 又f(3)5,f(1)3。, 即,解得不等式的解为1 a 3。3)答案分析:由题设可猜测f(x)是指数函数的抽象函数,从而猜想f(0)1且f(x)0。解:(1)令y0代入,则,。若f(x)0,则对任意,有,这与题设矛盾,f(x)0,f(0)1。(2)令yx0,则,又由(1)知f(x)0,f(2x)0,即f(x)0,故对任意x,f(x)0恒成立。4)答案分析:由题设可猜想存在,又由f(2)4可得a2故猜测存在函数,用数学归纳法证明如

    9、下:(1)x1时,又x N时,f(x)0,结论正确。(2)假设时有,则xk1时,xk1时,结论正确。综上所述,x为一切自然数时。5)答案分析:由题设可猜测f(x)是对数函数的抽象函数,f(1)0,f(9)2。解:(1),f(1)0。(2),从而有f(x)f(x8)f(9),即,f(x)是(0,)上的增函数,故 ,解之得:8x9。6)答案:设f(a)m,f(b)n,由于g(x)是f(x)的反函数,g(m)a,g(n)b,从而,g(m)g(n)g(mn),以a、b分别代替上式中的m、n即得g(ab)g(a)g(b)。7)答案分析: 由题设知f(x)是的抽象函数,从而由及题设条件猜想:f(x)是奇函

    10、数且在(0,4a)上是增函数(这里把a看成进行猜想)。解:(1)f(x)的定义域关于原点对称,且是定义域中的数时有,在定义域中。,f(x)是奇函数。(2)设0x1x22a,则0x2x12a,在(0,2a)上f(x)0,f(x1),f(x2),f(x2x1)均小于零,进而知中的, 于是f(x1) f(x2),在(0,2a)上f(x)是增函数。又,f(a)1,f(2a)0,设2ax4a,则0x2a2a,于是f(x)0,即在(2a,4a)上f(x)0。设2ax1x24a,则0x2x12a,从而知f(x1),f(x2)均大于零。f(x2x1)0,即f(x1)f(x2),即f(x)在(2a,4a)上也是增函数。 综上所述,f(x)在(0,4a)上是增函数。答案8)答案分析:由题设可知f(x)是幂函数的抽象函数,从而可猜想f(x)是偶函数,且在0,)上是增函数。解:(1)令y1,则f(x)f(x)f(1),f(1)1,f(x)f(x),f(x)为偶函数。(2)设,时,f(x1)f(x2),故f(x)在0,)上是增函数。(3)f(27)9,又,又,故。

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:山东省烟台市芝罘区2015_2016高三数学专题复习函数1抽象函数及题型.doc
    链接地址:https://www.ketangku.com/wenku/file-501084.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1