河北省2019-2020学年高二上学期期末考试数学试题 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省2019-2020学年高二上学期期末考试数学试题 WORD版含解析 河北省 2019 2020 学年 高二上 学期 期末考试 数学试题 WORD 解析
- 资源描述:
-
1、20192020学年第一学期高二期末考试数学试卷考生注意:1.本试卷分第卷(选择题)和第卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.3.本试卷主要考试内容:人教A版必修3第二、三章,选修2-1,修2-2第一章1.11.4,第三章.第卷一、选择题本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“,”的否定是( )A. ,B. ,C. ,D. ,【答案】D【解析】分析】任意改存在,改为,否定结论即可.【详解】全称命题的否定是特称命题,且将结论否定,故其否定为:,故选:D.【点睛】本题考查全称命题的否定.2
2、.双曲线的渐近线方程是( )A. B. C. D. 【答案】C【解析】【分析】根据双曲线的渐近线方程,即可求解.【详解】由题意可得,该双曲线的焦点在轴上,故其渐近线方程是.故选:C.【点睛】本题考查双曲线的简单几何性质,属于基础题.3.在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】先对复数进行乘法运算,整理至的形式,即可得出复数在复平面内对应的象限.【详解】解:因为,所以在复平面内对应的点位于第四象限.故选:D【点睛】本题考查复数的四则运算及复平面,考查运算求解能力.4.已知椭圆的焦点在x轴上,且焦距为,则( )A. 2B. 3C
3、. 4D. 5【答案】C【解析】【分析】由方程表示焦点在轴上的椭圆,可得和,再根据焦距计算出具体值,进行取舍.【详解】因为是焦点在轴上的椭圆,故,又故,解得故选:C.【点睛】本题考查椭圆方程,涉及的识别,属基础题.5.将红、黑、蓝、白5张纸牌(其中白纸牌有2张)随机分发给甲、乙、丙、丁4个人,每人至少分得1张,则下列两个事件为互斥事件的是( )A. 事件“甲分得1张白牌”与事件“乙分得1张红牌”B. 事件“甲分得1张红牌”与事件“乙分得1张蓝牌”C. 事件“甲分得1张白牌”与事件“乙分得2张白牌”D. 事件“甲分得2张白牌”与事件“乙分得1张黑牌”【答案】C【解析】对于 ,事件“甲分得1张白牌
4、”与事件“乙分得1张红牌”可以同时发生,不是互斥事件;对于事件“甲分得1张红牌”与事件“乙分得1张蓝牌”可能同时发生,不是互斥事件;对于,事件“甲分得2张白牌”与事件“乙分得1张黑牌”能同时发生,不是互斥事件; 但中的两个事件不可能发生,是互斥事件,故选C.6.若抛物线上的点P到焦点的距离是5,则点P到x轴的距离是( )A. 1B. 2C. 3D. 4【答案】C【解析】【分析】由抛物线定义,可知点到准线的距离,再进行适当变换即可求得.【详解】由题意可得,因为点P到准线的距离等于到焦点的距离5,故则点P到x轴的距离是.故选:C.【点睛】本题考查抛物线的定义,属抛物线基础题.7.记一个三位数的各位
5、数字的和为,则从不超过的三位奇数中任取一个,为偶数的概率为( )A. B. C. D. 【答案】A【解析】【分析】根据题意写出满足条件的三位数,即可求得答案.【详解】三位数的各位数字的和不超过满足条件的三位数有:,共个,其中为偶数的三位数有,故所求概率为.故选:A.【点睛】本题主要考查了古典概型问题的概率,解题关键是掌握概率求法,考查了分析能力和计算能力,属于基础题.8.已知直线:与双曲线:(,)交于,两点,点是弦的中点,则双曲线的离心率为( )A. B. 2C. D. 【答案】D【解析】【分析】根据点是弦的中点,两点横坐标之和等于,使用点差法,求出的值,即可求得答案.【详解】设点是弦的中点根
6、据中点坐标公式可得:,两点在直线:根据两点斜率公式可得:两点在双曲线上,即解得:故选:D.【点睛】此题考查根据直线与双曲线的交点坐标关系求解离心率,解题关键是掌握双曲线直线交点问题的解法,考查了分析能力和计算能力,属于中档题.9.已知点在椭圆:上,直线:,则“”是“点到直线的距离的最小值是”的( )A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】“点到直线的距离的最小值是”解得:,即可判断.【详解】点在椭圆:上,直线:,考虑“点到直线的距离的最小值是”设,点到直线的距离点到直线的距离的最小值是,即的最小值,所以符号恒正或恒负,当时,当时
7、,综上所述:.所以“”是“点到直线的距离的最小值是”的充分不必要条件.故选:B【点睛】此题考查充分条件与必要条件的辨析,关键在于根据题意准确求出参数的取值范围.10.某商场对职工开展了安全知识竞赛的活动,将竞赛成绩按照, ,分成组,得到下面频率分布直方图.根据频率分布直方图.下列说法正确的是( )根据频率分布直方图估计该商场的职工的安全知识竞赛的成绩的众数估计值为;根据频率分布直方图估计该商场的职工的安全知识竞赛的成绩的中位数约为;若该商场有名职工,考试成绩在分以下的被解雇,则解雇的职工有人;若该商场有名职工,商场规定只有安全知识竞赛超过分(包括分)的人员才能成为安全科成员,则安全科成员有人.
8、A B. C. D. 【答案】B【解析】【分析】根据频率分布直方图,逐项判断,即可求得答案.【详解】对于,由频率分布直方图知众数估计值为:,故错误;对于,设为,则解得,故正确;对于,考试成绩在分以下的有人,故正确;对于,安全知识考试超过分(包括分)的人员有人,则安全科成员有人,故错误.故选:B.【点睛】本题考查频率分布直方图的性质等基础知识,考查运算求解能力,属于基础题.11.现有下列四条曲线:曲线;曲线;曲线;曲线.直线与其相切的共有( )A. 1条B. 2条C. 3条D. 4条【答案】C【解析】【分析】先求出直线的斜率为,然后对曲线函数求导,代入求切点,如果切点在,即直线与曲线相切,即可求
9、得直线与四条曲线相切的共有几条.【详解】解:直线的斜率为,若,则由,得,点在直线上,则直线与曲线相切;若,则由,得,则直线与曲线相切;若,则由,得,都不在直线上,所以直线与曲线不相切;若,则由,得,其中在直线上,所以直线与曲线相切.故直线与其相切的共有条.故选:C【点睛】本题考查导数的几何意义,考查逻辑推理与数学运算的核心素养.12.已知双曲线:的左、右焦点分别为,点在双曲线上.若为钝角三角形,则的取值范围是( )A. B. C. D. 【答案】C【解析】【分析】根据双曲线的几何性质,结合余弦定理分别讨论当为钝角时的取值范围,根据双曲线的对称性,可以只考虑点在双曲线上第一象限部分即可.【详解】
10、由题:双曲线:的左、右焦点分别为,点在双曲线上,必有,若为钝角三角形,根据双曲线的对称性不妨考虑点在双曲线第一象限部分:当为钝角时,在中,设,有,即,所以;当时,所在直线方程,所以,根据图象可得要使,点向右上方移动,此时,综上所述:的取值范围是.故选:C【点睛】此题考查双曲线中焦点三角形相关计算,关键在于根据几何意义结合特殊情况分类讨论,体现数形结合思想.第卷二、填空题:本大题共4小题,每小题5分,共20分.将答案填在答题卡中的横线上.13.抛物线()的焦点坐标为,则_.【答案】【解析】【分析】根据抛物线定义,即可求得答案.【详解】(),焦点坐标为,解得:.故答案为:.【点睛】本题主要考查了根
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
