2021版高考数学一轮复习第八章立体几何第2讲空间图形的基本关系与公理练习理北师大版.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 一轮 复习 第八 立体几何 空间 图形 基本 关系 公理 练习 北师大
- 资源描述:
-
1、第2讲 空间图形的基本关系与公理 基础题组练1四条线段顺次首尾相连,它们最多可确定的平面个数有()A4个 B3个C2个 D1个解析:选A.首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面2已知l1,l2,l3是空间三条不同的直线,则下列命题正确的是()Al1l2,l2l3l1l3Bl1l2,l2l3l1l3Cl1l2l3l1,l2,l3共面Dl1,l2,l3共点l1,l2,l3共面解析:选B.在空间中,垂直于同一直线的两条直线不一定平行,故A错;两条平行直线中的一条垂直于第三条直线,则另一条也垂直于第三条直线,B正确;相互平行的三条直线不一定共面,如三棱柱的三条侧棱,故C错;
2、共点的三条直线不一定共面,如三棱锥的三条侧棱,故D错3如图,ABCDA1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()AA,M,O三点共线 BA,M,O,A1不共面CA,M,C,O不共面 DB,B1,O,M共面解析:选A.连接A1C1,AC,则A1C1AC,所以A1,C1,C,A四点共面,所以A1C平面ACC1A1,因为MA1C,所以M平面ACC1A1.又M平面AB1D1,所以M在平面ACC1A1与平面AB1D1的交线上,同理A,O在平面ACC1A1与平面AB1D1的交线上所以A,M,O三点共线4.(2020广东东莞模拟)如图,在三棱柱ABC
3、A1B1C1中,侧棱AA1底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是()ACC1与B1E是异面直线BAC平面ABB1A1CAE,B1C1为异面直线,且AEB1C1DA1C1平面AB1E解析:选C.因为CC1与B1E都在平面CC1B1B内,且CC1与B1E是相交直线,所以选项A错误假设AC平面ABB1A1,则ACAB,即CAB90,从而可得C1A1B190,这与题设“底面三角形A1B1C1是正三角形”矛盾,故假设错误,即选项B错误因为点B1AE,直线B1C1交平面AEB1于点B1,所以AE,B1C1为异面直线;由题意可知ABC是正三角形,又E是BC的中
4、点,所以AEBC,结合BCB1C1可得AEB1C1,故选项C正确因为直线AC交平面AB1E于点A,又ACA1C1,所以直线A1C1与平面AB1E相交,故选项D错误综上,选C.5在各棱长均相等的直三棱柱ABCA1B1C1中,已知M是棱BB1的中点,N是棱AC的中点,则异面直线A1M与BN所成角的正切值为()A. B1C. D解析:选C.法一:如图,取AA1的中点P,连接PN,PB,则由直三棱柱的性质可知A1MPB,则PBN为异面直线A1M与BN所成的角(或其补角)设三棱柱的棱长为2,则PN,PB,BN,所以PN2BN2PB2,所以PNB90,在RtPBN中,tanPBN,故选C.法二:以N为坐标
5、原点,NB,NC所在的直线分别为x轴,y轴,过点N与平面ABC垂直的直线为z轴,建立如图所示的空间直角坐标系,设AB2,则N(0,0,0),A1(0,1,2),B(,0,0),M(,0,1),所以(,0,0),(,1,1),设直线A1M与BN所成的角为,则cos |cos,|,则sin ,tan .6如图所示,在空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD上的点,且,则下列说法正确的是_EF与GH平行;EF与GH异面;EF与GH的交点M可能在直线AC上,也可能不在直线AC上;EF与GH的交点M一定在直线AC上解析:连接EH,FG(图略),依题意,可得EHB
6、D,FGBD,故EHFG,所以E,F,G,H四点共面因为EHBD,FGBD,故EHFG,所以EFGH是梯形,EF与GH必相交,设交点为M.因为点M在EF上,故点M在平面ACB上同理,点M在平面ACD上,所以点M是平面ACB与平面ACD的交点,又AC是这两个平面的交线,所以点M一定在直线AC上答案:7一正方体的平面展开图如图所示,在这个正方体中,有下列四个命题:AFGC;BD与GC成异面直线且夹角为60;BDMN;BG与平面ABCD所成的角为45.其中正确的是_(填序号)解析:将平面展开图还原成正方体(如图所示)对于,由图形知AF与GC异面垂直,故正确;对于,BD与GC显然成异面直线如图,连接E
7、B,ED,则BEGC,所以EBD即为异面直线BD与GC所成的角(或其补角)在等边BDE中,EBD60,所以异面直线BD与GC所成的角为60,故正确;对于,BD与MN为异面垂直,故错误;对于,由题意得,GD平面ABCD,所以GBD是BG与平面ABCD所成的角但在RtBDG中,GBD不等于45,故错误综上可得正确答案:8(2020河南安阳调研四)在正方体ABCDA1B1C1D1中,点E平面AA1B1B,点F是线段AA1的中点,若D1ECF,则当EBC的面积取得最小值时,_解析:如图所示,连接B1D1,取AB的中点G,连接D1G,B1G.由题意得CF平面B1D1G,所以当点E在直线B1G上时,D1E
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-503641.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
