2021版高考数学一轮复习第十章平面解析几何10.10.1圆锥曲线中的定值与定点问题练习理北师大版.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 一轮 复习 第十 平面 解析几何 10.10 圆锥曲线 中的 定点 问题 练习 北师大
- 资源描述:
-
1、10.10.1 圆锥曲线中的定值与定点问题核心考点精准研析考点一直线过定点问题【典例】(2020郑州模拟)已知O(0,0)和K(0,2)是平面直角坐标系中两个定点,过动点M(x,y)的直线MO和MK的斜率分别为k1,k2,且k1k2=-. (1)求动点M(x,y)的轨迹C的方程.(2)过点K作相互垂直的两条直线与轨迹C交于A,B两点,求证:直线AB过定点.【解题导思】序号联想解题(1)利用两点坐标表示出直线OM,MK的斜率,即可得到动点坐标所满足的条件(注意斜率存在的条件)(2)根据点K的位置,确定过点K相互垂直的两直线斜率是否存在;若两直线斜率存在,则斜率互为负倒数.建立A,B两点坐标之间的
2、关系,求出直线方程所满足的条件,进而确定定点.【解析】(1)由题意,知k1k2=-,得=-,整理得x2+y(y-2)=0,故C的方程为+(y-1)2=1(x0).(也可以写作x2+2y2-4y=0).(2)显然两条过点K的直线斜率都存在,设过点K的直线方程为y=kx+2,联立解得x=,y=,设直线AB的方程为:Ax+By+C=0,将x=,y=代入得+C=0整理得:2Ck2-4Ak+2B+C=0,由于两直线垂直,斜率乘积为-1,根据根与系数的关系=-1,即2B+3C=0,故直线AB过定点.圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参
3、数何时没有关系,找到定点.(2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.(2020鹰潭模拟)中心在原点,焦点在x轴上的椭圆,下顶点D(0,-1),且离心率e=.(1)求椭圆的标准方程.(2)经过点M(1,0)且斜率为k的直线l交椭圆于A,B两点,在x轴上是否存在定点P,使得MPA=MPB恒成立?若存在,求出点P坐标;若不存在,说明理由.【解析】(1)设椭圆的标准方程为+=1(ab0),由已知得b=1,=,又a2=b2+c2,所以a2=3,b2=1,即椭圆的标准方程为+y2=1.(2)假设x轴上存在定点P(m,0)满足条件,设A(x1,y1),B(x2,y2),
4、由题意可知,k0,设直线l方程为y=k(x-1),由消去y整理得,(1+3k2)x2-6k2x+3k2-3=0,x1+x2=,x1x2=,由MPA=MPB得,kPA+kPB=0,所以+=0,又y1=k(x1-1),y2=k(x2-1),+=+=0,所以k2(3k2-3)-(m+1)6k2+2m(3k2+1)=0,所以k(6k2-6-6mk2-6k2+6mk2+2m)=0,所以k(-6+2m)=0,即m=3,所以P(3,0),所以定点P坐标为(3,0).考点二圆过定点问题【典例】(2020咸阳模拟)已知A(-2,0),B(2,0),点C是动点且直线AC和直线BC的斜率之积为-. (1)求动点C的
5、轨迹方程.(2)设直线l与(1)中轨迹相切于点P,与直线x=4相交于点Q,判断以PQ为直径的圆是否过x轴上一定点.【解题导思】序号联想解题(1)两直线的斜率存在,故动点C与A,B两点横坐标不相等;利用点的坐标表示出斜率,构造等式关系.(2)直线和曲线相切,可利用判别式建立直线方程中的参数之间的关系,代入方程求出点Q的坐标,转化为两个向量垂直,进而坐标化处理【解析】(1)设C(x,y).由题意得kACkBC=-(y0).整理,得+=1(y0).故动点C的轨迹方程为+=1(y0).(2)方法一:易知直线l的斜率存在,设直线l:y=kx+m.联立得方程组 消去y并整理,得(3+4k2)x2+8kmx
6、+4m2-12=0.依题意得=(8km)2-4(3+4k2)(4m2-12)=0,即3+4k2=m2.设x1,x2为方程(3+4k2)x2+8kmx+4m2-12=0的两个根,则x1+x2=,所以x1=x2=.所以P,即P.又Q(4,4k+m),设R(t,0)为以PQ为直径的圆上一点,则由=0,得(4-t,4k+m)=0.整理,得(t-1)+t2-4t+3=0.由的任意性,得t-1=0且t2-4t+3=0,解得t=1.综上可知以PQ为直径的圆过x轴上一定点(1,0).方法二:设P(x0,y0),则曲线C在点P处的切线PQ:+=1.令x=4,得Q.设R(t,0)为以PQ为直径的圆上一点,则由=0
7、,得(x0-t)(4-t)+3-3x0=0,即x0(1-t)+t2-4t+3=0.由x0的任意性,得1-t=0且t2-4t+3=0,解得t=1.综上可知,以PQ为直径的圆过x轴上一定点(1,0).圆过定点,可依据直径所对圆周角为直角直接转化为两条线段的垂直,进而转化为两个向量垂直,即两向量的数量积等于0,从而建立方程求解定点的坐标.(2020西安模拟)已知椭圆C:+=1(ab0),离心率e=,A是椭圆的左顶点,F是椭圆的左焦点,=1,直线m:x=-4.(1)求椭圆C的方程.(2)直线l过点F与椭圆C交于P,Q两点,直线PA,QA分别与直线m交于M,N两点,试问:以MN为直径的圆是否过定点,如果
8、是,请求出定点坐标;如果不是,请说明理由.【解析】(1)得,椭圆C的方程为+=1.(2)当直线l斜率存在时,设直线l:y=k,P、Q,直线PA:y=,令x=-4,得M,同理N,以MN为直径的圆:+=0,整理得:+y2+2ky+4k2=0,得x2+8k2x+4k2-12=0,x1+x2=,x1x2=,将代入整理得:x2+y2+8x-y+7=0,令y=0,得x=-1或x=-7.当直线l斜率不存在时,令P、Q、M、N,以MN为直径的圆+y2=9也过、两点,综上:以MN为直径的圆过两定点、.考点三定值问题命题精解读1.考什么:(1)考查圆锥曲线中与定值有关问题的求解与证明等问题.(2)考查数学运算、逻
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-503679.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
看图扩写句子-33页.pdf
