一数学第五章(第16课时)正弦定理、余弦定理(4).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 第五 16 课时 正弦 定理 余弦
- 资源描述:
-
1、高中数学教案 第五章正弦定理、余弦定理(4)(第16课时) 王新敞课 题:正弦定理、余弦定理(4)教学目的:1进一步熟悉正、余弦定理内容;2能够应用正、余弦定理进行边角关系的相互转化;3能够利用正、余弦定理判断三角形的形状;4能够利用正、余弦定理证明三角形中的三角恒等式教学重点:利用正、余弦定理进行边角互换时的转化方向教学难点: 三角函数公式变形与正、余弦定理的联系授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学方法:启发引导式1启发学生在证明三角形问题或者三角恒等式时,要注意正弦定理、余弦定理的适用题型与所证结论的联系,并注意特殊正、余弦关系的应用,比如互补角的正弦值相等,互补
2、角的余弦值互为相反数等;2引导学生总结三角恒等式的证明或者三角形形状的判断,重在发挥正、余弦定理的边角互换作用教学过程:一、复习引入:正弦定理:余弦定理: ,二、讲解范例:例1在任一ABC中求证:证:左边=0=右边例2 在ABC中,已知,B=45 求A、C及c解一:由正弦定理得:B=4590 即ba A=60或120当A=60时C=75 当A=120时C=15 解二:设c=x由余弦定理 将已知条件代入,整理:解之:当时 从而A=60 ,C=75当时同理可求得:A=120 ,C=15例3 在ABC中,BC=a, AC=b, a, b是方程的两个根,且2cos(A+B)=1 求(1)角C的度数 (
3、2)AB的长度 (3)ABC的面积解:(1)cosC=cosp-(A+B)=-cos(A+B)=- C=120(2)由题设: AB2=AC2+BC2-2ACBCosC 即AB=(3)SABC=例4 如图,在四边形ABCD中,已知ADCD, AD=10, AB=14, BDA=60, BCD=135 求BC的长解:在ABD中,设BD=x则即 整理得:解之: (舍去)由余弦定理: 例5 ABC中,若已知三边为连续正整数,最大角为钝角,1求最大角 ; 2求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积解:1设三边 且C为钝角 解得 或3 但时不能构成三角形应舍去当时 2设夹C角的两边为
4、S当时S最大=例6 在ABC中,AB5,AC3,D为BC中点,且AD4,求BC边长分析:此题所给题设条件只有边长,应考虑在假设BC为后,建立关于的方程而正弦定理涉及到两个角,故不可用此时应注意余弦定理在建立方程时所发挥的作用因为D为BC中点,所以BD、DC可表示为,然用利用互补角的余弦互为相反数这一性质建立方程解:设BC边为,则由D为BC中点,可得BDDC,在ADB中,cosADB在ADC中,cosADC又ADBADC180cosADBcos(180ADC)cosADC解得,2, 所以,BC边长为2评述:此题要启发学生注意余弦定理建立方程的功能,体会互补角的余弦值互为相反数这一性质的应用,并注
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
福建省漳州市2021-2022学年高二上学期期末教学质量检测物理试题.pdf
