河北省唐山市2020届高三数学上学期摸底考试试题理含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省 唐山市 2020 届高三 数学 上学 摸底 考试 试题 解析
- 资源描述:
-
1、河北省唐山市2020届高三数学上学期摸底考试试题 理(含解析)一选择题(60分)1.已知集合,则 ()A. B. C. D. 【答案】C【解析】【分析】求得集合,再根据集合的交集运算,即可求解.【详解】由题意,集合,所以,故选C.【点睛】本题主要考查了集合的运算,其中解答中正确求解集合是解答的关键,着重考查了推理与运算能力,属于基础题.2.已知,是关于的方程的一个根,则()A. B. C. D. 【答案】A【解析】【分析】由是关于的方程的一个根,代入方程化简得,根据复数相等的充要条件,列出方程组,即可求解.【详解】依题意,复数是关于的方程的一个根,可得,即:,所以,解得,所以,故选A.【点睛】
2、本题主要考查了复数方程的应用,以及复数相等的充要条件的应用,着重考查了推理与运算能力,属于基础题.3.已知,则,的大小关系为()A. B. C. D. 【答案】D【解析】【分析】根据对数的单调性,分别求得的范围,即可求解,得到答案.【详解】由题意,根据对数的单调性,可得,即,即,即,所以,故选D.【点睛】本题主要考查了对数函数的单调性的应用,其中解答中熟记对数函数的单调性,合理求解得范围是解答的关键,着重考查了推理与运算能力,属于基础题.4.函数的图象大致为()A. B. C. D. 【答案】D【解析】【分析】根据函数的解析式,得到,所以函数为偶函数,图象关于对称,排除B、C;再由函数的单调性
3、,排除A,即可得到答案.【详解】由题意,函数,可得,即,所以函数为偶函数,图象关于对称,排除B、C;当时,则0,所以函数在上递增,排除A,故选.【点睛】本题主要考查了函数的奇偶性与函数单调性的应用,其中解答中熟练应用函数的奇偶性和单调性,进行合理排除是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由一个半圆和一个四分之一圆构成,两个阴影部分分别标记为和.在此图内任取一点,此点取自区域的概率记为,取自区域的概率记为,则()A. B. C. D. 与的大小关系与半径长度有关【答案】C【解析】【分析】利用圆的面积公式和扇形的面积公
4、式,分别求得阴影部分的面积,得到阴影部分的面积阴影部分的面积,即可求解.【详解】由题意,设四分之一圆的半径为,则半圆的半径为,阴影部分的面积为,空白部分的面积为,阴影部分M的面积为:,阴影部分的面积阴影部分的面积,所以,故选C.【点睛】本题主要考查了几何概型的应用,其中解答中认真审题,正确求解阴影部分的面积是解答的关键,着重考查了推理与运算能力,属于基础题.6.下图是判断输入的年份是否是闰年的程序框图,若先后输入,则输出的结果分别是(注:表示除以的余数)()A. 闰年,是闰年B. 是闰年,是平年C. 平年,是闰年D. 是平年,是平年【答案】C【解析】【分析】由给定的条件分支结构的程序框图,根据
5、判断条件,准确计算,即可求解,得到答案.【详解】由题意,输入时,输出是平年,输入时,输出是润年,故选【点睛】本题主要考查了条件分支结构的程序框图的计算结果的输出,其中解答中根据条件分支结构的程序框图,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.7.若,则()A. B. C. D. 【答案】B【解析】【分析】由三角函数的诱导公式,求得,再由余弦的倍角公式,即可求解,得到答案.【详解】由三角函数的诱导公式,可得,又由余弦的倍角公式,可得,所以,故选B.【点睛】本题主要考查了三角函数的诱导公式和余弦的倍角公式的化简求值,其中解答中熟练应用三角函数的基本公式,准确运算是解答的关键,着重
6、考查了推理与运算能力,属于基础题.8.已知等差数列的公差不为零,其前项和为,若,成等比数列,则()A. B. C. D. 【答案】C【解析】【分析】由题意,得,利用等差数列的求和公式,列出方程求得,即可求解的值,得到答案.【详解】由题意,知,成等比数列,所以,即,整理得,所以,解得,所以,故选C.【点睛】本题主要考查了等比中项公式,以及等差数列的通项公式和前n项和公式的应用,其中解答中熟练应用等差数列的通项公式和前n项和公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.9.双曲线的右焦点为,点为的一条渐近线上的点,为坐标原点,若,则的最小值为()A. B. C. D. 【答案】
7、B【解析】【分析】求得双曲线的一条渐近线为,由,得到点的坐标为,利用三角形的面积公式和基本不等式,即可求解.【详解】由题意,双曲线的一条渐近线为,设,因为,可得点的横坐标为,代入渐近线,可得,所以点的坐标为,所以,当且仅当时,即时,等号成立,即的最小值为.故选B.【点睛】本题主要考查了双曲线的标准方程及简单的几何性质的应用,其中解答中熟记双曲线的几何性质,利用基本不等式准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.10.在的展开式中,的系数是()A. B. C. D. 【答案】B【解析】【分析】由二项的展开式的通项为,进而可求得展开式的的系数,得到答案.【详解】由题意,二项式的展
8、开式的通项为,所以的展开式中,的系数为:,故选B.【点睛】本题主要考查了二项式定理的应用,其中解答中熟记二项展开式的通项,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.11.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是()A. B. C. D. 【答案】A【解析】【分析】由直线过椭圆的左焦点,得到左焦点为,且,再由,求得,代入椭圆的方程,求得,进而利用椭圆的离心率的计算公式,即可求解.【详解】由题意,直线经过椭圆左焦点,令,解得,所以,即椭圆的左焦点为,且 直线交轴于,所以,因为,所以,所以,又由点在椭圆上,得 由,可得,解得,所以,所以椭圆的离心率为.故
9、选A.【点睛】本题考查了椭圆的几何性质离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:求出 ,代入公式;只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围)12.设函数,若存在实数使得恒成立,则的取值范围是()A. B. C. D. 【答案】D【解析】【分析】由存在实数使得恒成立,转化为恒成立,得到,构造新函数,利用导数求得函数的最值,得出关于的不等式,即可求解.【详解】由题意,函数的定义域为,要使得存在实数使得恒成立,即恒成立,只需恒成立,即恒成立,即设,则,当时,函数单调递增,当时,函数单调递减,所以当时,函数取得最大值,最大值为,即,设
10、,则当时,函数单调递减,当时,函数单调递增,所以当时,函数取得最小值,最小值为,即,所以只需,解得,即实数的取值范围是,故选D.【点睛】本题主要考查了导数的综合应用,其中解答中把存在实数使得恒成立,转化为恒成立,进而得得到是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.二、填空题(共20分)13.若满足约束条件,则的最大值为_.【答案】【解析】【分析】作出约束条件表示的平面区域,结合图象,确定目标函数的最优解,代入目标函数,即可求解,得到答案.【详解】由题意,作出约束条件所表示的平面区域,如图所示,目标函数可化为直线,当直线过点C时,此时目标函数取得最大值,又由,解得,即,所以
11、目标函数的最大值为.【点睛】本题主要考查简单线性规划求解目标函数的最值问题其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题14.已知是夹角为的两个单位向量,则_.【答案】【解析】【分析】根据平面向量的数量积的运算公式,准确运算,即可求解,得到答案.【详解】由向量的数量积的运算公式,可得.【点睛】本题主要考查了向量的数量积的运算,其中解答中熟记向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.15.已知函数,若在上恰有个极值点,则的取值范围是_.【答案】【解析
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
