山东省高中数学《1.1.1 正弦定理》教案 新人教A版必修5.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.1.1 正弦定理
- 资源描述:
-
1、课题:1.1.1 正弦定理主备人:执教者:【学习目标】1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法。2.会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。【学习重点】正弦定理的探索和证明及其基本应用。【学习难点】已知两边和其中一边的对角解三角形时判断解的个数。【授课类型】新授课 【教 具】课件、电子白板 【学习方法】 【学习过程】一、 引入: 固定ABC的边CB及B,使边AC绕着顶点C转动。思考:C的大小与它的对边AB的长度之间有怎样的数量关系? 显然,边AB的长度随着其对角C的大小的增大而增大。能否用一个等式把这种关系精确地表示出来? 二、 新课学习:在初
2、中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图11-2,在RtABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有,又, 则 ,从而在直角三角形ABC中,思考:那么对于任意的三角形,以上关系式是否仍然成立?可分为锐角三角形和钝角三角形两种情况:当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=,则, 同理可得, 从而 证法二):过点A作, 由向量的加法可得 则 ,即同理,过点C作,可得 从而 类似可推出,当ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)从上面的研探过程,可得以下定理
3、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即理解定理(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使,;(2)等价于,从而知正弦定理的基本作用为:已知三角形的任意两角及其一边可以求其他边,如;已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如。一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。三、 特例示范:例1在中,已知,cm,解三角形。例2在中,已知cm,cm,解三角形(角度精确到,边长精确到1cm)。(注意:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。)四、 当堂练习: 第5页 练习第1(1)、2(1)题。 补充练习已知ABC中,求(答案:1:2:3)五、 本节小结:(1)定理的表示形式:;或,(2)正弦定理的应用范围:已知两角和任一边,求其它两边及一角;已知两边和其中一边对角,求另一边的对角。六、作业布置:学案1.1.1个性设计
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
