专题1.1.1 正弦定理学易试题君之K三关高二数学人教版(必修5).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题1.1.1 正弦定理学易试题君之K三关高二数学人教版必修5 专题 1.1 正弦 定理 试题 三关高二数 学人 必修
- 资源描述:
-
1、第一章 解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1正弦定理在中,若角A,B,C对应的三边分别是a,b,c,则各边和它所对角的正弦的比相等,即_正弦定理对任意三角形都成立2解三角形一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的_已知三角形的几个元素求其他元素的过程叫做_K知识参考答案:12元素 解三角形K重点正弦定理的变形和推广、正弦定理在解三角形中的应用K难点三角形解的个数的探究、三角形形状的判断K易错解三角形时要明确角的取值范围,同时注意对角的讨论正弦定理的常见变形及推广(1)(2)(3)(4)正弦定理的推广:,其中为外接圆的半径(1)已知ABC中,则=_
2、;(2)已知ABC中,A,则=_【答案】(1);(2)2【解析】(1)根据正弦定理的变形,可得(2)方法1:设,则有 从而,又,所以=2方法2:根据正弦定理的变形,可得【名师点睛】熟记正弦定理的变形,可使解题过程更加简捷,从而达到事半功倍的效果在中,求证:【答案】证明见解析【解析】设外接圆的半径为R,则 于是所以【解题技巧】的两种变形的应用:(1)(边化角);(2)(角化边)正弦定理在解三角形中的应用、三角形解的个数的探究1正弦定理可以用来解决下列两类解三角形的问题:(1)已知两角和任意一边,求其他的边和角;(2)已知两边和其中一边的对角,求其他的边和角2三角形解的个数的探究(以已知和解三角形
3、为例)(1)从代数角度来看若,则满足条件的三角形的个数为0,即无解;若,则满足条件的三角形的个数为1;若,则满足条件的三角形的个数为1或2注:对于(3),由可知B可能为锐角,也可能为钝角,此时应由“大边对大角”、“三角形内角和等于180”等进行讨论(2)从几何角度来看当A为锐角时:一解 一解两解无解当A为钝角或直角时:一解 一解 无解 无解(1)已知在中,则_,_,_;(2)已知在中,则_,_,_;(3)已知在中,求和【答案】(1),;(2),;(3)见解析【解析】(1),由得由得(2),为锐角,(3),或,当时,当时,或【解题技巧】(1)已知三角形的两角与一边解三角形时,由三角形内角和定理可
4、以计算出三角形的另一角,由正弦定理可计算出三角形的另两边(2)已知两边和其中一边的对角解三角形时,先用正弦定理求出另一边所对的角的正弦值,若这个角不是直角,则利用三角形中“大边对大角”看能否判断所求这个角是锐角,当已知的角为大边所对的角时,则能判断另一边所对的角为锐角;当已知的角为小边所对的角时,则不能判断,此时就有两解,再分别求解即可;然后由三角形内角和定理求出第三个角;最后根据正弦定理求出第三条边三角形形状的判断判断三角形形状的常用方法边化角,已知条件中同时包含边角关系,判断三角形形状时,将边化为角,从三角变换的角度来研究角的关系和特征,进而判断三角形的形状一般来说,这种方法能够判断的三角
5、形都是特殊的三角形,如直角三角形、等腰三角形、等边三角形、等腰直角三角形在中,已知,且,则是A等腰三角形B直角三角形C等腰直角三角形D等腰或直角三角形【答案】B【解析】设的外接圆半径为,由正弦定理的推广,得,代入,可得,即因为,所以,即由正弦定理的推广可得,所以,由及可得,所以是直角三角形故选B【名师点睛】注意到a,b,c在条件式中是齐次线性关系,因此可以考虑利用正弦定理将边化为角通过角的特征或者关系来判断三角形的形状忽略角的取值范围而出错在中,若,求的取值范围【错解】由正弦定理,可得由,可得故的取值范围为【错因分析】错解中没有考虑角的取值范围,误认为角的取值范围为【正解】由正弦定理可得,即,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2018-2019学年七年级语文上册课件(人教部编版):16 猫(共31张PPT).ppt
