山西省临汾市第一中学2020-2021学年高一数学上学期期末考试试题(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山西省 临汾市 第一 中学 2020 2021 学年 数学 学期 期末考试 试题 解析
- 资源描述:
-
1、山西省临汾市第一中学2020-2021学年高一数学上学期期末考试试题(含解析)注意事项:1.本试题考试时间120分钟,满分150分.2.全部答案在答题卡上完成,答在本试卷上无效.第卷(选择题60分)一、选择题(本大题共15小题,每小题4分,共60分.在每小题列出的四个选项中,仅有一个是正确选项)1. 若集合,则下列选项正确的是( )A. B. C. D. 2. 是的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 在下列区间中,函数的零点所在的区间为( )A. B. C. D. 4. ( )A. B. C. D. 5. 已知角的终边过点,且,则的值为(
2、 )A. B. C. D. 6. 已知函数为自然对数的底数,若,则( )A. B. C. D. 7. 函数在的图象大致为( )A. B. C. D. 8. 下列命题为真命题的是( )A. 若,则B. “,”的否定是“,”C. 函数有两个零点D. 幂函数在上减函数,则实数9. 掷铁饼者取材于希腊的体育竞技活动,刻画的是一名强健的男了在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的一只手臂长约为米,整个肩宽约为米.“弓”所在圆的半径约为1.25米.则掷铁饼者双手之向的距离约为( )(参考数据:)A. 1.612米B. 1.768米C. 1.868米D
3、. 2.045米10. 已知函数在定义域R上的偶函数,当,恒成立,则满足的的取值范围是( )A. B. C. D. 11. 函数(其中, )的图象如图所示,为了得到的图象,则只要将的图象( )A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度12. 若,则的最小值是( )A B. C. D. 13. 已知函数 图象关于直线对称,则( )A. 函数为奇函数B. 函数上单调递增C. 若,则的最小值为D. 函数的图象向右平移个单位长度得到函数的图象14. 己知函数,若方程有四个不同的零点,且,则下列结论正确的是( )A. B. C. D. 15. 将函数
4、的图象先向右平移个单位长度,在把所得函数图象的横坐标变为原来的倍,纵坐标不变,得到函数的图象,若函数在上没有零点,则的取值范围是( )A. B. C. D. 第卷(非选择题 90分)二、填空题(本大题共5小题,每小题4分,共20分)16. 已知lg2=a,lg3=b,试用a,b表示log125=_17. 函数的单调减区间为_ 18. 已知a,b为正实数,且4a+bab+20,则ab的最小值为_19. 已知函数,若对,恒有,则实数的取值范围是_20. 已知函数,则_.三、解答题(本大题共6小题,共70分.写出必要的文字说明、证明过程或演算步骤)21. 设集合,集合(1)若,求;(2)设命题,命题
5、,若p是q成立的必要条件,求实数a的取值范围22. 已知.(1)化简;(2)若,求的值.23. 若,.()若的解集为,求的值;()求关于的不等式的解集.24. 已知函数.(1)求最小正周期;(2)求在上的单调递减区间;(3)令,若对于恒成立,求实数的取值范围.25. 新冠肺炎是近百年来人类遭遇的影响范围最广的全球性大流行病.面对前所未知,突如其来,来势汹汹的疫情天灾,中央出台了一系列助力复工复产好政策.城市快递行业运输能力迅速得到恢复,市民的网络购物也越来越便利.根据大数据统计,某条快递线路运行时,发车时间间隔t(单位:分钟)满足:,平均每趟快递车辆的载件个数(单位:个)与发车时间间隔t近似地
6、满足,其中.(1)若平均每趟快递车辆的载件个数不超过1500个,试求发车时间间隔t的值;(2)若平均每趟快递车辆每分钟的净收益(单位:元),问当发车时间间隔t为多少时,平均每趟快递车辆每分钟的净收益最大?并求出最大净收益.26. 已知函数.(1)若函数是偶函数,求实数的值;(2)若函数,关于的方程有且只有一个实数根,求实数的取值范围.临汾一中2020-2021学年度高一年级第一学期期末考试数学试题(卷)(解析版)注意事项:1.本试题考试时间120分钟,满分150分.2.全部答案在答题卡上完成,答在本试卷上无效.第卷(选择题60分)一、选择题(本大题共15小题,每小题4分,共60分.在每小题列出
7、的四个选项中,仅有一个是正确选项)1. 若集合,则下列选项正确的是( )A. B. C. D. 【答案】C【解析】【分析】根据函数的定义域和值域分别求解出集合,由此判断出正确的的选项.【详解】因为中,所以,所以,又因为中,所以,所以,所以成立,故选:C.2. 是的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】直接利用充要条件的判定判断方法判断即可【详解】因为“”,则“”;但是“”不一定有“”.所以“”,是“”成立的充分不必要条件故选A.【点睛】充分条件、必要条件的判定主要有以下几种方法:定义法:若,则是的充分条件,是的必要条件;
8、构造命题法:“若,则”为真命题,则是的充分条件,是的必要条件;数集转化法:,:,若,则是的充分条件,是的必要条件.3. 在下列区间中,函数的零点所在的区间为( )A. B. C. D. 【答案】C【解析】【分析】先判断的单调性,利用零点存在定理判断根所在的区间.【详解】在是增函数,而根据零点存在定理,可得函数的零点所在的区间为.故选:C【点睛】判断函数零点所在的大致区间的方法如下:若函数在闭区间a,b上的图像是连续曲线,并且在区间端点的函数值符号不同,即,则在区间a,b内,函数至少有一个零点,即相应的方程在区间a,b内至少有一个实数解。4. ( )A. B. C. D. 【答案】A【解析】【分
9、析】根据实数指数幂的运算公式,准确运算,即可求解,得到答案.【详解】由题意可知,故选A.【点睛】本题主要考查了实数指数幂的运算化简、求值问题,其中解答中熟记实数指数幂的运算公式,合理、准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.5. 已知角的终边过点,且,则的值为( )A. B. C. D. 【答案】B【解析】【分析】【详解】因为角的终边过点,所以 , ,解得,故选B.6. 已知函数为自然对数的底数,若,则( )A. B. C. D. 【答案】D【解析】【分析】先根据指数函数,对数函数的性质得,再根据函数在R上单调递减求解.【详解】因为.所以,又函数在R上单调递减,所以,故选:
10、D.7. 函数在的图象大致为( )A. B. C. D. 【答案】D【解析】【分析】先判断出函数的奇偶性,然后根据的符号判断出的大致图象.【详解】因为,所以,为奇函数,所以排除A项,又,所以排除B、C两项,故选:D【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.8. 下列命题为真命题的是( )A. 若,则B. “,”的否定是“,”C. 函数有两个零点D. 幂函数在上是减函数,则实数【答案】C【解析
11、】【分析】作差可判断A;写出命题的否定可判断B;利用导数判断函数的单调性和极值可判断C;根据幂函数的定义可判断D.【详解】对于A,因为,所以,所以,错误;对于B,“,”的否定是“,”,错误;对于C,函数,当得,当得,所以在是单调递增函数,在是单调递减函数,所以在时有最小值,即,所以有两个零点,正确;对于D, 由已知得,无解,幂函数在上是减函数,则实数,错误.故选:C.【点睛】本题是一道综合题,对于零点的判断,可以利用函数的单调性结合极值情况进行判断,考查了学生对基础知识、基本技能的掌握情况.9. 掷铁饼者取材于希腊的体育竞技活动,刻画的是一名强健的男了在掷铁饼过程中最具有表现力的瞬间.现在把掷
12、铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的一只手臂长约为米,整个肩宽约为米.“弓”所在圆的半径约为1.25米.则掷铁饼者双手之向的距离约为( )(参考数据:)A. 1.612米B. 1.768米C. 1.868米D. 2.045米【答案】B【解析】【分析】根据弧长公式求出圆心角为直角,再根据勾股定理可求得弦长.【详解】由题得:“弓”所在的弧长为:;,所以其所对的圆心角;两手之间的距离.故选:B.10. 已知函数在定义域R上的偶函数,当,恒成立,则满足的的取值范围是( )A B. C. D. 【答案】A【解析】【分析】根据题意可得在上单调递增,又函数的图象关于直线对称,可得函数在上单
13、调递减,从而根据函数不等式列出不等式,求解取值范围.【详解】当时,恒成立,恒成立,即函数在上单调递增,又函数的图象关于直线对称,函数在上单调递减,若要满足,则需;解得.故选:A.【点睛】本题的关键点是利用函数的单调性和对称性解不等式,考查转化思想,属于基础题.11. 函数(其中, )的图象如图所示,为了得到的图象,则只要将的图象( )A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度【答案】B【解析】【分析】根据图像有,得到函数的最小正周期,根据周期公式可求出,然后求出和的解析式,再根据相位变换得到答案.【详解】根据图像有,所以,则.不妨取,又有,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-513597.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
