河北省张家口市2019_2020学年高一数学11月阶段检测试题含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省 张家口市 2019 _2020 学年 数学 11 阶段 检测 试题 解析
- 资源描述:
-
1、河北省张家口市2019-2020学年高一数学11月阶段检测试题(含解析)一、选择题(本大题共12小题)1. 已知集合,且,则a满足A. B. C. D. 2. 已知集合,则集合A的真子集的个数为A. 1B. 2C. 3D. 43. 已知,则A. 0B. C. D. 44. 已知函数,若,则a等于A. B. C. 1D. 25. 函数的定义域为A. B. C. D. 6. 已知,则A. B. C. D. 7. 已知是定义域为R上的增函数,则a的取值范围是A. B. C. D. 8. 若函数是定义R在上的偶函数,在上是减函数,且,则使得的x的取值范围是A. B. C. D. 9. 设,则A. B.
2、 C. D. 10. 在函数,中,是幂函数的是A. B. C. D. 11. 已知,设,则a,b,c的大小关系是A. B. C. D. 12. 函数的单调减区间为A. B. C. D. 二、填空题(本大题共4小题)13. 设且,则_,_14. 函数且的图象恒过定点的坐标为_15. 函数的值域是_16. 已知集合,集合,集合,若,则实数m的范围是_三、解答题(本大题共6小题)17. 求下列各式的值;18. 已知函数的定义域为集合A,集合,求集合;若,求a的取值范围19. 已知实数x满足条件,求函数的值域20. 已知幂函数的图象经过点试求m的值并写出该函数的解析式;试求满足的实数a的取值范围21.
3、 已知函数若函数是奇函数,求a的值;证明不论a为何值,函数在上为减函数22. 已知函数且当时,求函数的定义域;当时,讨论的单调性并证明;当时,求关于x的不等式的解集答案和解析1.【答案】A【解析】解:集合,或,故选:A由集合,先求出或再由,能求出a的取值范围本题考查实数值的求法,考查并集、补集等基础知识,考查运算求解能力,是基础题2.【答案】C【解析】解:集合,集合A的真子集的个数为故选:C先求出集合,由此能求出集合A的真子集的个数本题考查集合的真子集个数的求法,考查子集定义等基础知识,考查运算求解能力,是基础题3.【答案】C【解析】解:,故选:C由,得,由此能求出结果本题考查函数值的求法,考
4、查函数性质等基础知识,考查运算求解能力,是基础题4.【答案】B【解析】解:,故选:B由题意可得,然后代入,代入结合已知即可求解本题主要考查了函数值的求解,属于基础试题5.【答案】D【解析】解:由题意可得,解可得,或,即函数的定义域为故选:D由题意可得,解不等式即可求解本题考查了求函数定义域的应用问题,解题的关键是列出使函数解析式有意义的不等式组,是基础题目6.【答案】A【解析】解:令,求得,代入已知式子,可得,故有,故选:A令,求得,代入已知式子,可得的解析式,从而得到的解析式本题主要考查用换元法求函数的解析式,属于基础题7.【答案】D【解析】解:是R上的增函数,可得:,解得则a的取值范围是故
5、选:D利用分段函数的单调性,列出不等式组,转化求解即可本题考查分段函数的单调性的应用,列出不等式组是解题的关键,是中档题8.【答案】B【解析】解:构造特殊函数,满足在R上的偶函数,在上是减函数,且,故选:B构造特殊函数法求解考查函数的奇偶性,单调性及其应用,基础题9.【答案】A【解析】解:,故选:A可以得出,从而可得出a,b,c的大小关系本题考查了对数函数、指数函数的单调性,增函数、减函数的定义,考查了计算能力,属于基础题10.【答案】B【解析】解:根据幂函数的定义,在函数,中,是幂函数的有,故选:B由题意利用幂函数的定义,得出结论本题主要考查幂函数的定义,属于基础题11.【答案】A【解析】解
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
冀教版七年级英语上册Unit 6 Lesson 32 At the Supermarket(共14张PPT).ppt
