河北省张家口市宣化区宣化第一中学2020-2021学年高一数学上学期期初考试试题.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省 张家口市 宣化 第一 中学 2020 2021 学年 数学 上学 期期 考试 试题
- 资源描述:
-
1、河北省张家口市宣化区宣化第一中学2020-2021学年高一数学上学期期初考试试题一、选择题(本大题共14小题,共70.0分)1. 下列说法正确的有很小的实数可以构成集合;集合与集合是同一个集合;这些数组成的集合有5个元素;任何集合至少有两个子集A. 0个B. 1个C. 2个D. 3个2. 设集合0,1,2,则A. B. C. D. 1,3. 集合,则阴影部分表示的集合为A. B. C. D. 4. 不等式和的解集分别为A和B,且,则实数a取值范围是A. B. C. D. 5. 下列四种说法正确的有函数的定义域和值域确定后,函数的对应关系也就确定了;是函数;函数的图象是一条直线;与是同一函数A.
2、 0个B. 1个C. 2个D. 3个6. 已知,则函数A. 有最小值,无最大值B. 有最小值,最大值1C. 有最小值1,最大值D. 无最小值和最大值7. 设函数,则A. B. 3C. D. 8. 设函数,则使得的自变量x的取值范围为A. B. C. D. 9. 定义在R上的偶函数在上是增函数,在上是减函数,又,则A. 在上是增函数,且最大值是6B. 在上是增函数,且最小值是6C. 在上是减函数,且最小值是6D. 在上是减函数,且最大值是610. 已知函数是偶函数,则在上此函数A. 是增函数B. 不是单调函数C. 是减函数D. 不能确定11. 定义在R上的偶函数满足:对任意的,有则A. B. C
3、. D. 12. 已知函数的定义域为,则函数的定义域是A. B. C. D. 13. 若满足,且在内是增函数,又,则的解集是A. B. C. D. 14. 已知是偶函数,且时若当时,的最大值为m,最小值为n,则A. 2B. 1C. 3D. 二、填空题(本大题共6小题,共30.0分)15. 函数的定义域为_16. 已知是一次函数,则_17. 如果函数在区间上是减少的,那么a的取值范围是_18. 函数的值域为_19. 已知是定义在R上奇函数,满足,则_20. 已知为定义在R上的偶函数,且当时,单调递增,则不等式的解集为_三、解答题(本大题共6小题,共70.0分)21. 已知集合,全集为实数集R求,
4、;若,求a的取值范围22. 若函数的定义域和值域都为,求b的值23. 已知是定义在R上的偶函数,当时,当时,求的解析式;作出函数的图象,并指出其单调区间24. 已知是定义在上的增函数,且满足,求证:求不等式的解集25. 已知二次函数的图象过点,且函数对称轴方程为求函数的解析式;设函数,求在区间上的最小值26. 已知函数的定义域为R,对于任意的x,都有,且当时,若求证:为奇函数;求证:是R上的减函数;求函数在区间上的值域数学试卷答案和解析1.【答案】A【解析】解:很小的实数可以构成集合;集合中元素是确定的,显然不正确集合与集合不是同一个集合,前者是函数的值域,后者是点的集合;所以不正确说这些数组
5、成的集合有5个元素;不正确;因为,集合中的元素是互异的,所以不正确,任何集合至少有两个子集反例空集,只有一个子集所以不正确;故选:A利用集合元素的特征,集合中元素的含义,子集的定义,判断命题的子集即可本题考查命题的真假,集合概念的理解与应用,是基本知识的考查2.【答案】C【解析】解:由B中不等式变形得:,解得:或,即或,0,1,2,故选:C求出B中不等式的解集确定出B,找出A与B的交集即可此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键3.【答案】D【解析】【分析】本题考查了求Venn图表示得集合,关键是根据图形会判断出阴影部分表示的集合元素特征,再通过集合运算求出,属于基础题由题意分
6、别求函数的定义域和的值域,从而求出集合A、B;再根据图形阴影部分表示的集合是求得结果【解答】解:由,得,由,得,则图中阴影部分表示的集合是故选D4.【答案】D【解析】解:解不等式,得或,;解不等式,得或,;又,解得,实数a的取值范围是故选:D解不等式与不等式,求出集合A、B;再由,列出关于a的不等式组,求出解集即可本题考查了不等式的解法与应用问题,也考查了集合基本关系的应用问题,是基础题目5.【答案】A【解析】解:,函数的定义域和值域确定后,函数的对应关系不一定确定,比如函数的定义域和值域均为R,而函数的对应关系可为,故错误;,由,且,可得,则不是函数,故错误;,由于N为自然数集,函数的图象是
7、一些点,故错误;,即,而,两个函数的定义域不同,不是同一函数,故错误其中说法正确的个数为0故选:A由函数的三要素:定义域和对应法则、值域,对于,可举,即可判断;对于,求出x满足的条件,即可判断;对于,考虑定义域N,即可判断;对于,考虑函数的定义域,即可判断本题考查命题的真假判断,主要是函数的定义和图象,考查运算能力和推理能力,属于基础题6.【答案】C【解析】解:,在区间上是增函数,故选:C根据对称轴判断在上的单调性,根据单调性判断最值本题考查了二次函数的单调性,属于基础题7.【答案】D【解析】解:函数,则,故选:D由条件求出,结合函数解析式求出,计算求得结果本题主要考查利用分段函数求函数的值的
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-514230.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
江苏省姜堰市某中学2012届高三英语一轮复习课件3:M10 UNIT4(新人教版).ppt
