2022年新教材高考数学 临考题号押第20题 统计概率(含解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年新教材高考数学 临考题号押第20题 统计概率含解析 2022 新教材 高考 数学 考题 号押第 20 统计 概率 解析
- 资源描述:
-
1、押第20题 统计概率统计概率是高考的重点和热点,从2019年高考情况来看,更是有压轴题的趋势,并且分值和题量都略有增加。其中解答题考查涉及的主要方向有:(1)与社会生活紧密相连,紧跟时代步伐创设情境。(2)概率的求解同时也常渗透考查统计知识,背景新颖,体现了概率与统计的工具性和交汇性,综合考查考生的应用意识、阅读理解能力、数据处理能力和转化与化归思想的应用;(3)统计知识其核心是样本数据的获得和分析方法,重点是频率分布直方图、茎叶图、样本的数字特征、线性回归方程、独立性检验,常与概率交汇命题,意在考查考生的数据分析能力和综合应用能力1均值与方差的性质若Y=aX+b,其中a,b是常数,X是随机变
2、量,则(1)E(k)=k,D(k)=0,其中k为常数;(2)E(aX+b)=aE(X)+b,D(aX+b)=a2D(X);(3)E(X1+X2)=E(X1)+E(X2);(4)D(X)=E(X2)(E(X)2;(5)若X1,X2相互独立,则E(X1X2)=E(X1)E(X2);(6)若X服从两点分布,则E(X)=p,D(X)=p(1p);(7)若X服从二项分布,即XB(n,p),则E(X)=np,D(X)=np(1p)2随机变量是否服从超几何分布的判断若随机变量X服从超几何分布,则满足如下条件:(1)该试验是不放回地抽取n次;(2)随机变量X表示抽取到的次品件数(或类似事件),反之亦然3求超几
3、何分布的分布列的步骤第一步,验证随机变量服从超几何分布,并确定参数N,M,n的值;第二步,根据超几何分布的概率计算公式计算出随机变量取每一个值时的概率;第三步,用表格的形式列出分布列4求超几何分布的均值与方差的方法(1)列出随机变量X的分布列,利用均值与方差的计算公式直接求解;(2)利用公式E(X)=,D(X)=求解1(2021湖南高考真题)端午节吃粽子是我国的传统习俗.设一盘中装有6个粽子,其中肉粽1个,蛋黄粽2个,豆沙粽3个,这三种粽子的外观完全相同,从中任意选取2个.(1)用表示取到的豆沙粽的个数,求的分布列;(2)求选取的2个中至少有1个豆沙粽的概率.【详解】(1)由条件可知,所以的分
4、布列,如下表,(2)选取的2个中至少有1个豆沙粽的对立事件是一个都没有,则选取的2个中至少有1个豆沙粽的概率.2(2021北京高考真题)在核酸检测中, “k合1” 混采核酸检测是指:先将k个人的样本混合在一起进行1次检测,如果这k个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束:如果这k个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,得到每人的检测结果,检测结束.现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确.(I)将这100人随机分成10组,每组10人,且对每组都采用“10合1”混采核酸检测.(i)如果感染新
5、冠病毒的2人在同一组,求检测的总次数;(ii)已知感染新冠病毒的2人分在同一组的概率为.设X是检测的总次数,求X的分布列与数学期望E(X).(II)将这100人随机分成20组,每组5人,且对每组都采用“5合1”混采核酸检测.设Y是检测的总次数,试判断数学期望E(Y)与(I)中E(X)的大小.(结论不要求证明)【详解】(1)对每组进行检测,需要10次;再对结果为阳性的组每个人进行检测,需要10次;所以总检测次数为20次;由题意,可以取20,30,则的分布列:所以;(2)由题意,可以取25,30,两名感染者在同一组的概率为,不在同一组的概率为,则.3(2021全国高考真题)某学校组织“一带一路”知
6、识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记为小明的累计得分,求的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【详解】(1)由题可知,的所有可能取值为,;所以的分
7、布列为(2)由(1)知,若小明先回答问题,记为小明的累计得分,则的所有可能取值为,;所以因为,所以小明应选择先回答类问题4(2021全国高考真题)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,(1)已知,求;(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:的一个最小正实根,求证:当时,当时,;(3)根据你的理解说明(2)问结论的实际含义【详解】(1).(2)设,因为,故,若,则,故.,因为,故有两个不同零点
8、,且,且时,;时,;故在,上为增函数,在上为减函数,若,因为在为增函数且,而当时,因为在上为减函数,故,故为的一个最小正实根,若,因为且在上为减函数,故1为的一个最小正实根,综上,若,则.若,则,故.此时,故有两个不同零点,且,且时,;时,;故在,上为增函数,在上为减函数,而,故,又,故在存在一个零点,且.所以为的一个最小正实根,此时,故当时,.(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1.1(2022福建模拟预测)在某次数学考试中,共有四道填空题,每道题5分.已知某同学在此次考试中,在前两道题中,每道题答对的概
9、率均为,答错的概率均为;对于第三道题,答对和答错的概率均为;对于最后一道题,答对的概率为,答错的概率为.(1)求该同学在本次考试中填空题部分得分不低于15分的概率;(2)设该同学在本次考试中,填空题部分的总得分为,求的分布列.【解析】(1)设“第题答对”为事件,设“得分不低于15分”为事件B,则P(B)=;(2)易知的取值可能为0,5,10,15,20,=;=;=;则的分布列为:051015202(2022广东深圳二模)2022年北京冬奥会后,由一名高山滑雪运动员甲组成的专业队,与两名高山滑雪爱好者乙、丙组成的业余队进行友谊赛约定赛制如下:业余队中的两名队员轮流与甲进行比赛,若甲连续赢两场则专
10、业队获胜;若甲连续输两场则业余队获胜:若比赛三场还没有决出胜负,则视为平局,比赛结束已知各场比赛相互独立,每场比赛都分出胜负,且甲与乙比赛,乙赢概率为;甲与丙比赛,丙赢的概率为p,其中(1)若第一场比赛,业余队可以安排乙与甲进行比赛,也可以安排丙与甲进行比赛请分别计算两种安排下业余队获胜的概率;若以获胜概率大为最优决策,问:业余队第一场应该安排乙还是丙与甲进行比赛?(2)为了激励专业队和业余队,赛事组织规定:比赛结束时,胜队获奖金3万元,负队获奖金1.5万元;若平局,两队各获奖金1.8万元在比赛前,已知业余队采用了(1)中的最优决策与甲进行比赛,设赛事组织预备支付的奖金金额共计X万元,求X的数
11、学期望的取值范围【解析】(1)第一场比赛,业余队安排乙与甲进行比赛,业余队获胜的概率为:;第一场比赛,业余队安排丙与甲进行比赛,业余队获胜的概率为:,因为,所以,所以.所以,业余队第一场应该安排乙与甲进行比赛.(2)由已知万元或万元.由(1)知,业余队最优决策是第一场应该安排乙与甲进行比赛.此时,业余队获胜的概率为,专业队获胜的概率为,所以,非平局的概率为,平局的概率为.的分布列为:的数学期望为(万元)而,所以的取值范围为:(单位:万元).3(2022湖南雅礼中学二模)“不关注分数,就是对学生的今天不负责:只关注分数,就是对学生的未来不负责.”为锻炼学生的综合实践能力,长沙市某中学组织学生对雨
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
世纪金榜2017届高考数学(文科全国通用)一轮总复习课件:第一章 集合与常用逻辑用语 1.ppt
