2022年新教材高考数学 临考题号押第8题 函数导数(含解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年新教材高考数学 临考题号押第8题 函数导数含解析 2022 新教材 高考 数学 考题 号押第 函数 导数 解析
- 资源描述:
-
1、押第8题 函数导数函数导数一直是选择题和填空题高考的热点,尤其是导数与函数的单调性、极值、最值问题是高考考查的重点内容,有时也会考查导数的运算、导数的几何意义等,比较综合.1导数的几何意义的应用:(1)已知切点P(x0,y0),求y=f (x)过点P的切线方程:求出切线的斜率f (x0),由点斜式写出方程;(2)已知切线的斜率为k,求y=f (x)的切线方程:设切点P(x0,y0),通过方程k=f (x0)解得x0,再由点斜式写出方程;(3)已知切线上一点(非切点),求y=f (x)的切线方程:设切点P(x0,y0),利用导数求得切线斜率f (x0),再由斜率公式求得切线斜率,列方程(组)解得
2、x0,最后由点斜式或两点式写出方程(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由k=f (x0)求出切点坐标(x0,y0),最后写出切线方程(5)在点P处的切线即是以P为切点的切线,P一定在曲线上.过点P的切线即切线过点P,P不一定是切点因此在求过点P的切线方程时,应首先检验点P是否在已知曲线上2利用导数判断或证明一个函数在给定区间上的单调性,实质上就是判断或证明不等式()在给定区间上恒成立一般步骤为:(1)求f (x);(2)确认f (x)在(a,b)内的符号;(3)作出结论,时为增函数,时为减函数3由函数的单调性求参数的取值范围的方法(1
3、)可导函数在某一区间上单调,实际上就是在该区间上(或)(在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围;(2)可导函数在某一区间上存在单调区间,实际上就是(或)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题;(3)若已知在区间I上的单调性,区间I中含有参数时,可先求出的单调区间,令I是其单调区间的子集,从而可求出参数的取值范围.4(1)求函数极值的方法:确定函数的定义域求导函数求方程的根检查在方程的根的左、右两侧的符号,确定极值点如果左正右负,那么在这个根处取得极大值;如果左负右正,那么在这个根处取得极小值;如果在这个根
4、的左、右两侧符号不变,则在这个根处没有极值(2)利用极值求参数的取值范围:确定函数的定义域,求导数,求方程的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围.5求函数f (x)在a,b上最值的方法(1)若函数f (x)在a,b上单调递增或递减,则f (a)与f (b)一个为最大值,一个为最小值(2)若函数f (x)在区间(a,b)内有极值,先求出函数f (x)在区间(a,b)上的极值,与f (a)、f (b)比较,其中最大的一个是最大值,最小的一个是最小值(3)函数f (x)在区间(a,b)上有唯一一个极值点时,这个极值点就是最大(或最小)值点1(2021全国高考真题)若过点可
5、以作曲线的两条切线,则()ABCD【答案】D【详解】在曲线上任取一点,对函数求导得,所以,曲线在点处的切线方程为,即,由题意可知,点在直线上,可得,令,则.当时,此时函数单调递增,当时,此时函数单调递减,所以,由题意可知,直线与曲线的图象有两个交点,则,当时,当时,作出函数的图象如下图所示:由图可知,当时,直线与曲线的图象有两个交点.故选:D.解法二:画出函数曲线的图象如图所示,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.由此可知.故选:D.2(2021浙江高考真题)已知函数,则图象为如图的函数可能是()ABCD【答案】D【详解】对于A,该函数为非奇非偶函数,与函数图象不符,排除
6、A;对于B,该函数为非奇非偶函数,与函数图象不符,排除B;对于C,则,当时,与图象不符,排除C.故选:D.3(2020年北京市高考数学试卷)已知函数,则不等式的解集是( )ABCD【答案】D【详解】因为,所以等价于,在同一直角坐标系中作出和的图象如图:两函数图象的交点坐标为,不等式的解为或.所以不等式的解集为:.4(2020年新高考全国卷数学考试题文档版(海南卷)已知函数在上单调递增,则的取值范围是( )ABCD【答案】D【详解】由得或所以的定义域为因为在上单调递增所以在上单调递增所以5(2020年天津市高考数学试卷)已知函数若函数恰有4个零点,则的取值范围是( )ABCD【答案】D【详解】注
7、意到,所以要使恰有4个零点,只需方程恰有3个实根即可,令,即与的图象有个不同交点.因为,当时,此时,如图1,与有个不同交点,不满足题意;当时,如图2,此时与恒有个不同交点,满足题意;当时,如图3,当与相切时,联立方程得,令得,解得(负值舍去),所以.综上,的取值范围为.故选:D.6(2020年新高考全国卷数学高考试题(山东)若定义在的奇函数f(x)在单调递减,且f(2)=0,则满足的x的取值范围是( )ABCD【答案】D【详解】因为定义在上的奇函数在上单调递减,且,所以在上也是单调递减,且,所以当时,当时,所以由可得:或或解得或,所以满足的的取值范围是,故选:D.1(2022山东聊城一模)已知
8、正数满足,则的最小值为()ABCD【答案】B【详解】因为,即,所以,所以.令,则,所以在上单调递增,所以,即,所以令.则.令,解得:;令,解得:;所以在上单调递减,在上单调递增,所以.即的最小值为.故选:B2(2022山东潍坊一中模拟预测)已知函数,直线是曲线的一条切线,则的取值范围是()ABCD【答案】B【详解】设切点为,曲线在切点处的切线方程为,整理得,所以令,则当时,单调递减;当时,单调递增故,则的取值范围是故选:B3(2021山东潍坊模拟预测)已知函数若存在相异的两个实数,使得成立,则实数的取值范围为()ABCD【答案】C【详解】由题意,函数,当时,可得,此时函数在上单调递减,不成立,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
